EQUI-ATTRACTION AND THE CONTINUOUS DEPENDENCE OF PULLBACK ATTRACTORS ON PARAMETERS

2004 ◽  
Vol 04 (03) ◽  
pp. 373-384 ◽  
Author(s):  
DESHENG LI ◽  
P. E. KLOEDEN

The equi-attraction properties of uniform pullback attractors [Formula: see text] of nonautonomous dynamical systems (θ,ϕλ) with a parameter λ∈Λ, where Λ is a compact metric space, are investigated; here θ is an autonomous dynamical system on a compact metric space P which drives the cocycle ϕλon a complete metric state space X. In particular, under appropriate regularity conditions, it is shown that the equi-attraction of the family [Formula: see text] uniformly in p∈P is equivalent to the continuity of the setvalued mappings [Formula: see text] in λ with respect to the Hausdorff metric on the nonempty compact subsets of X.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Heng Liu ◽  
Fengchun Lei ◽  
Lidong Wang

Consider the surjective, continuous mapf:X→Xand the continuous mapf¯of𝒦(X)induced byf, whereXis a compact metric space and𝒦(X)is the space of all nonempty compact subsets ofXendowed with the Hausdorff metric. In this paper, we give a short proof that iff¯is Li-Yoke sensitive, thenfis Li-Yorke sensitive. Furthermore, we give an example showing that Li-Yorke sensitivity offdoes not imply Li-Yorke sensitivity off¯.


2018 ◽  
Vol 20 (07) ◽  
pp. 1750086 ◽  
Author(s):  
Keonhee Lee ◽  
C. A. Morales ◽  
Bomi Shin

We prove that the set of expansive measures of a homeomorphism of a compact metric space is a [Formula: see text] subset of the space of Borel probability measures equipped with the weak* topology. Next that every expansive measure of a homeomorphism of a compact metric space can be weak* approximated by expansive measures with invariant support. In addition, if the expansive measures of a homeomorphism of a compact metric space are dense in the space of Borel probability measures, then there is an expansive measure whose support is both invariant and close to the whole space with respect to the Hausdorff metric. Henceforth, if the expansive measures are dense in the space of Borel probability measures, the set of heteroclinic points has no interior and the space has no isolated points.


2021 ◽  
Vol 22 (1) ◽  
pp. 169
Author(s):  
Amir Veisi ◽  
Ali Delbaznasab

<p>When working with a metric space, we are dealing with the additive group (R, +). Replacing (R, +) with an Abelian group (G, ∗), offers a new structure of a metric space. We call it a G-metric space and the induced topology is called the G-metric topology. In this paper, we are studying G-metric spaces based on L-groups (i.e., partially ordered groups which are lattices). Some results in G-metric spaces are obtained. The G-metric topology is defined which is further studied for its topological properties. We prove that if G is a densely ordered group or an infinite cyclic group, then every G-metric space is Hausdorff. It is shown that if G is a Dedekind-complete densely ordered group, (X, d) a G-metric space, A ⊆ X and d is bounded, then f : X → G with f(x) = d(x, A) := inf{d(x, a) : a ∈ A} is continuous and further x ∈ cl<sub>X</sub>A if and only if f(x) = e (the identity element in G). Moreover, we show that if G is a densely ordered group and further a closed subset of R, K(X) is the family of nonempty compact subsets of X, e &lt; g ∈ G and d is bounded, then d′ (A, B) &lt; g if and only if A ⊆ N<sub>d</sub>(B, g) and B ⊆ N<sub>d</sub>(A, g), where N<sub>d</sub>(A, g) = {x ∈ X : d(x, A) &lt; g}, d<sub>B</sub>(A) = sup{d(a, B) : a ∈ A} and d′ (A, B) = sup{d<sub>A</sub>(B), d<sub>B</sub>(A)}.</p>


2017 ◽  
Vol 27 (08) ◽  
pp. 1750119 ◽  
Author(s):  
Lidong Wang ◽  
Yingcui Zhao ◽  
Yuelin Gao ◽  
Heng Liu

Let [Formula: see text] be a compact metric space and [Formula: see text] be an [Formula: see text]-tuple of continuous selfmaps on [Formula: see text]. This paper investigates Hausdorff metric Li–Yorke chaos, distributional chaos and distributional chaos in a sequence from a set-valued view. On the basis of this research, we draw the main conclusions as follows: (i) If [Formula: see text] has a distributionally chaotic pair, especially [Formula: see text] is distributionally chaotic, the strongly nonwandering set [Formula: see text] contains at least two points. (ii) We give a sufficient condition for [Formula: see text] to be distributionally chaotic in a sequence and chaotic in the strong sense of Li–Yorke. Finally, an example to verify (ii) is given.


1988 ◽  
Vol 38 (3) ◽  
pp. 393-395 ◽  
Author(s):  
Phil Diamond ◽  
Peter Kloeden

A simple characterisation is given of compact sets of the space K(X), of nonempty compact subsets of a complete metric space X, with the Hausdorff metric dH. It is used to give a new proof of the Blaschke selection theorem for compact starshaped sets.


1975 ◽  
Vol 18 (5) ◽  
pp. 709-714 ◽  
Author(s):  
Chyi Shiau ◽  
Kok-Keong Tan ◽  
Chi Song Wong

Let (X, d) be a (nonempty) metric space. bc(X) will denote the family of all nonempty bounded closed subsets of X endowed with the Hausdorff metric D induced by d [2, pp. 205]. Let/be a map of X into bc(X). f is nonexpansive at a point x in X if for all y in X.


2016 ◽  
Vol 38 (1) ◽  
pp. 143-154 ◽  
Author(s):  
CHRIS GOOD ◽  
JONATHAN MEDDAUGH

Let $f:X\rightarrow X$ be a continuous map on a compact metric space, let $\unicode[STIX]{x1D714}_{f}$ be the collection of $\unicode[STIX]{x1D714}$-limit sets of $f$ and let $\mathit{ICT}(f)$ be the collection of closed internally chain transitive subsets. Provided that $f$ has shadowing, it is known that the closure of $\unicode[STIX]{x1D714}_{f}$ in the Hausdorff metric coincides with $\mathit{ICT}(f)$. In this paper, we prove that $\unicode[STIX]{x1D714}_{f}=\mathit{ICT}(f)$ if and only if $f$ satisfies Pilyugin’s notion of orbital limit shadowing. We also characterize those maps for which $\overline{\unicode[STIX]{x1D714}_{f}}=\mathit{ICT}(f)$ in terms of a variation of orbital shadowing.


1979 ◽  
Vol 31 (1) ◽  
pp. 130-138 ◽  
Author(s):  
J. Grispolakis ◽  
E. D. Tymchatyn

A continuum will be a connected, compact, metric space. By a mapping we mean a continuous function. By a partially ordered space X we mean a continuum X together with a partial order which is closed when regarded as a subset of X × X. We let 2x (resp. C(X)) denote the hyperspace of closed subsets (resp. subcontinua) of X with the Vietoris topology which coincides with the topology induced by the Hausdorff metric. The hyperspaces 2X and C(X) are arcwise connected metric continua (see [3, Theorem 2.7]). If A ⊂ X we let C(A) denote the subspace of subcontinua of X which lie in A.If X is a partially ordered space we define two functions L, M : X → 2X by setting for each x ∊ X


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Nayab Alamgir ◽  
Quanita Kiran ◽  
Hassen Aydi ◽  
Yaé Ulrich Gaba

In this paper, we establish a Hausdorff metric over the family of nonempty closed subsets of an extended b -metric space. Thereafter, we introduce the concept of multivalued fuzzy contraction mappings and prove related α -fuzzy fixed point theorems in the context of extended b -metric spaces that generalize Nadler’s fixed point theorem as well as many preexisting results in the literature. Further, we establish α -fuzzy fixed point theorems for Ćirić type fuzzy contraction mappings as a generalization of previous results. Moreover, we give some examples to support the obtained results.


2018 ◽  
Vol 32 (15) ◽  
pp. 1850166 ◽  
Author(s):  
Lixin Jiao ◽  
Lidong Wang ◽  
Fengquan Li ◽  
Heng Liu

Consider the surjective continuous map [Formula: see text]: [Formula: see text] defined on a compact metric space X. Let [Formula: see text] be the space of all non-empty compact subsets of X equipped with the Hausdorff metric and define [Formula: see text]: [Formula: see text] by [Formula: see text] for any [Formula: see text]. In this paper, we introduce several stronger versions of sensitivities, such as multi-sensitivity with respect to a vector, [Formula: see text]-sensitivity, strong multi-sensitivity. We obtain some basic properties of the concepts of these sensitivities and discuss the relationships with other sensitivities for continuous self-map on [0,[Formula: see text]1]. Some sufficient conditions for a dynamical system to be [Formula: see text]-sensitive are presented. Also, it is shown that the strong multi-sensitivity of f implies that [Formula: see text] is [Formula: see text]-sensitive. In turn, the [Formula: see text]-sensitivity of [Formula: see text] implies that [Formula: see text] is [Formula: see text]-sensitive. In particular, it is proved that if [Formula: see text] is a multi-transitive map with dense periodic sets, then f is [Formula: see text]-sensitive. Finally, we give a multi-sensitive example which is not [Formula: see text]-sensitive.


Sign in / Sign up

Export Citation Format

Share Document