scholarly journals INFINITELY MANY BROWNIAN GLOBULES WITH BROWNIAN RADII

2010 ◽  
Vol 10 (04) ◽  
pp. 591-612
Author(s):  
MYRIAM FRADON ◽  
SYLVIE RŒLLY

We consider an infinite system of non-overlapping globules undergoing Brownian motions in ℝ3. The term globules means that the objects we are dealing with are spherical, but with a radius which is random and time-dependent. The dynamics is modelized by an infinite-dimensional stochastic differential equation with local time. Existence and uniqueness of a strong solution is proven for such an equation with fixed deterministic initial condition. We also find a class of reversible measures.

Author(s):  
SERGIO ALBEVERIO ◽  
ALEXEI DALETSKII

A stochastic differential equation on an infinite-dimensional Lie group G constructed as the countable power of a compact Lie group G is considered. The existence and uniqueness of the solutions and quasi-invariance of their distribution are proved.


2014 ◽  
Vol 15 (01) ◽  
pp. 1550002 ◽  
Author(s):  
Li-Shun Xiao ◽  
Sheng-Jun Fan ◽  
Na Xu

In this paper, we are interested in solving general time interval multidimensional backward stochastic differential equation in Lp (p ≥ 1). We first study the existence and uniqueness for Lp (p > 1) solutions by the method of convolution and weak convergence when the generator is monotonic in y and Lipschitz continuous in z both non-uniformly with respect to t. Then we obtain the existence and uniqueness for L1 solutions with an additional assumption that the generator has a sublinear growth in z non-uniformly with respect to t.


2020 ◽  
Vol 28 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Mohamed El Jamali ◽  
Mohamed El Otmani

AbstractIn this paper, we study the solution of a backward stochastic differential equation driven by a Lévy process with one rcll reflecting barrier. We show the existence and uniqueness of a solution by means of the penalization method when the coefficient is stochastic Lipschitz. As an application, we give a fair price of an American option.


2018 ◽  
Vol 21 (5) ◽  
pp. 1420-1435 ◽  
Author(s):  
Mirko D’Ovidio ◽  
Silvia Vitali ◽  
Vittoria Sposini ◽  
Oleksii Sliusarenko ◽  
Paolo Paradisi ◽  
...  

Abstract We consider an ensemble of Ornstein–Uhlenbeck processes featuring a population of relaxation times and a population of noise amplitudes that characterize the heterogeneity of the ensemble. We show that the centre-of-mass like variable corresponding to this ensemble is statistically equivalent to a process driven by a non-autonomous stochastic differential equation with time-dependent drift and a white noise. In particular, the time scaling and the density function of such variable are driven by the population of timescales and of noise amplitudes, respectively. Moreover, we show that this variable is equivalent in distribution to a randomly-scaled Gaussian process, i.e., a process built by the product of a Gaussian process times a non-negative independent random variable. This last result establishes a connection with the so-called generalized grey Brownian motion and suggests application to model fractional anomalous diffusion in biological systems.


2018 ◽  
Vol 26 (3) ◽  
pp. 143-161
Author(s):  
Ahmadou Bamba Sow ◽  
Bassirou Kor Diouf

Abstract In this paper, we deal with an anticipated backward stochastic differential equation driven by a fractional Brownian motion with Hurst parameter {H\in(1/2,1)} . We essentially establish existence and uniqueness of a solution in the case of stochastic Lipschitz coefficients and prove a comparison theorem in a specific case.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Abdallah Ali Badr ◽  
Hanan Salem El-Hoety

A stochastic differential equation, SDE, describes the dynamics of a stochastic process defined on a space-time continuum. This paper reformulates the fractional stochastic integro-differential equation as a SDE. Existence and uniqueness of the solution to this equation is discussed. A numerical method for solving SDEs based on the Monte-Carlo Galerkin method is presented.


Sign in / Sign up

Export Citation Format

Share Document