RESTRICTING GLOBALLY-DEFINED MACKEY FUNCTORS TO NILPOTENT FINITE GROUPS

2008 ◽  
Vol 07 (01) ◽  
pp. 1-19 ◽  
Author(s):  
ISMAÏL BOURIZK

Let B be the Burnside ring considered as a globally-defined Mackey functor, and k be a field of positive characteristic q. We prove that, when k ⊗ℤ B is restricted to nilpotent groups of order prime to q, the only simple Mackey functors that can appear as subquotients of it are of the form SE,k, where E is the direct product of elementary abelian p-groups. In the special case k = 𝔽2, the simple Mackey functor SE,𝔽2 must appear as a filtration factor in 𝔽2 ⊗ℤ B for every direct product of elementary abelian p-groups E of odd order.

1960 ◽  
Vol 12 ◽  
pp. 73-100 ◽  
Author(s):  
Daniel Gorenstein

In the course of investigating the structure of finite groups which have a representation in the form ABA, for suitable subgroups A and B, we have been forced to study groups G which admit an automorphism ϕ such that every element of G lies in at least one of the orbits under ϕ of the elements g, gϕr(g), gϕrϕ(g)ϕ2r(g), gϕr(g)ϕr2r(g)ϕ3r(g), etc., where g is a fixed element of G and r is a fixed integer.In a previous paper on ABA-groups written jointly with I. N. Herstein (4), we have treated the special case r = 0 (in which case every element of G can be expressed in the form ϕi(gj)), and have shown that if the orders of ϕ and g are relatively prime, then G is either Abelian or the direct product of an Abelian group of odd order and the quaternion group of order 8.


2018 ◽  
Vol 17 (04) ◽  
pp. 1850065
Author(s):  
Alireza Abdollahi ◽  
Majid Arezoomand

Let [Formula: see text] be any group and [Formula: see text] be a subgroup of [Formula: see text] for some set [Formula: see text]. The [Formula: see text]-closure of [Formula: see text] on [Formula: see text], denoted by [Formula: see text], is by definition, [Formula: see text] The group [Formula: see text] is called [Formula: see text]-closed on [Formula: see text] if [Formula: see text]. We say that a group [Formula: see text] is a totally[Formula: see text]-closed group if [Formula: see text] for any set [Formula: see text] such that [Formula: see text]. Here we show that the center of any finite totally 2-closed group is cyclic and a finite nilpotent group is totally 2-closed if and only if it is cyclic or a direct product of a generalized quaternion group with a cyclic group of odd order.


Author(s):  
Patrick Fitzpatrick ◽  
L. G. Kovács

AbstractThis is the first of three papers (the others by the first author alone) which determine all varieties of nilpotent groups of class (at most) four. The initial step is to reduce the problem to two cases: varieties whose free groups have no elements of order 2, and varieties whose free groups have no nontrivial elements of odd order. The varieties of the first kind form a distributive lattice with respect to order by inclusion (which is not a sublattice in the lattice of all group varieties). We give an embedding of this lattice in the direct product of six copies of the lattice which consist of 0 (as largest element) and the odd positive integers ordered by divisibility. The six integer parameters so associated with a variety directly match a (finite) defining set of laws for the variety. We also show that the varieties of the second kind do form a sublattice in the lattice of all varieties. That (nondistributive) sublattice will be treated, in a similarly conclusive manner, in the subsequent papers of this series.


1974 ◽  
Vol 17 (2) ◽  
pp. 142-153 ◽  
Author(s):  
Y. K. Leong

The isomorphism problem for finite groups of odd order and nilpotency class 2 with cyclic centre will be solved using some results of Brady [1], [2]. Since a finite nilpotent group is the direct product of its Sylow subgroups, we only need to consider finite q-groups where q is a prime. It has been shown in [1] and [2] that a finite q-group of nilpotency class 2 with cyclic centre is a central product either of two-generator subgroups with cyclic centre or of two-generator subgroups with cyclic centre and a cyclic subgroup, and that the q-groups of class 2 on two generators with cyclic centre comprise the following list: , and if q = 2 we have as well .


2014 ◽  
Vol 150 (6) ◽  
pp. 979-998 ◽  
Author(s):  
Neena Gupta

AbstractLet $k$ be a field and $\mathbb{V}$ the affine threefold in $\mathbb{A}^4_k$ defined by $x^m y=F(x, z, t)$, $m \ge 2$. In this paper, we show that $\mathbb{V} \cong \mathbb{A}^3_k$ if and only if $f(z, t): = F(0, z, t)$ is a coordinate of $k[z, t]$. In particular, when $k$ is a field of positive characteristic and $f$ defines a non-trivial line in the affine plane $\mathbb{A}^2_k$ (we shall call such a $\mathbb{V}$ as an Asanuma threefold), then $\mathbb{V}\ncong \mathbb{A}^3_k$ although $\mathbb{V} \times \mathbb{A}^1_k \cong \mathbb{A}^4_k$, thereby providing a family of counter-examples to Zariski’s cancellation conjecture for the affine 3-space in positive characteristic. Our main result also proves a special case of the embedding conjecture of Abhyankar–Sathaye in arbitrary characteristic.


2010 ◽  
Vol 06 (07) ◽  
pp. 1541-1564 ◽  
Author(s):  
QINGQUAN WU ◽  
RENATE SCHEIDLER

Let K be a function field over a perfect constant field of positive characteristic p, and L the compositum of n (degree p) Artin–Schreier extensions of K. Then much of the behavior of the degree pn extension L/K is determined by the behavior of the degree p intermediate extensions M/K. For example, we prove that a place of K totally ramifies/is inert/splits completely in L if and only if it totally ramifies/is inert/splits completely in every M. Examples are provided to show that all possible decompositions are in fact possible; in particular, a place can be inert in a non-cyclic Galois function field extension, which is impossible in the case of a number field. Moreover, we give an explicit closed form description of all the different exponents in L/K in terms of those in all the M/K. Results of a similar nature are given for the genus, the regulator, the ideal class number and the divisor class number. In addition, for the case n = 2, we provide an explicit description of the ramification group filtration of L/K.


Author(s):  
Merrick Cai ◽  
Daniil Kalinov

In this paper, we study the irreducible quotient [Formula: see text] of the polynomial representation of the rational Cherednik algebra [Formula: see text] of type [Formula: see text] over an algebraically closed field of positive characteristic [Formula: see text] where [Formula: see text]. In the [Formula: see text] case, for all [Formula: see text] we give a complete description of the polynomials in the maximal proper graded submodule [Formula: see text], the kernel of the contravariant form [Formula: see text], and subsequently find the Hilbert series of the irreducible quotient [Formula: see text]. In the [Formula: see text] case, we give a complete description of the polynomials in [Formula: see text] when the characteristic [Formula: see text] and [Formula: see text] is transcendental over [Formula: see text], and compute the Hilbert series of the irreducible quotient [Formula: see text]. In doing so, we prove a conjecture due to Etingof and Rains completely for [Formula: see text], and also for any [Formula: see text] and [Formula: see text]. Furthermore, for [Formula: see text], we prove a simple criterion to determine whether a given polynomial [Formula: see text] lies in [Formula: see text] for all [Formula: see text] with [Formula: see text] and [Formula: see text] fixed.


Author(s):  
Patrick Fitzpatrick

AbstractIn this paper we complete the investigation of those varieties of nilpotent groups of class (at most) four whose free groups have no nontrivial elements of odd order. Each such variety is labelled by a vector of sixteen parameters, each parameter a nonnegative integer or ∞, subject to numerous but simple conditions. Each vector satisfying these conditions is in fact used and directly yields a defining set of laws for the variety it labels. Moreover, one can easily recognise from the parameters whether one variety is contained in another. In view of the reduction carried out in the first paper of this series (written jointly with L. G. Kovács) this completes the determination of all varieties of nilpotent groups of class four.


2019 ◽  
Vol 2019 (755) ◽  
pp. 293-312
Author(s):  
Donu Arapura

AbstractThe goal of this paper is to give a new proof of a special case of the Kodaira–Saito vanishing theorem for a variation of Hodge structure on the complement of a divisor with normal crossings. The proof does not use the theory of mixed Hodge modules, but instead reduces it to a more general vanishing theorem for semistable nilpotent Higgs bundles, which is then proved by using some facts about Higgs bundles in positive characteristic.


Sign in / Sign up

Export Citation Format

Share Document