SOME RESULTS ON THE INTERSECTION GRAPHS OF IDEALS OF RINGS

2013 ◽  
Vol 12 (04) ◽  
pp. 1250200 ◽  
Author(s):  
S. AKBARI ◽  
R. NIKANDISH ◽  
M. J. NIKMEHR

Let R be a ring with unity and I(R)* be the set of all nontrivial left ideals of R. The intersection graph of ideals of R, denoted by G(R), is a graph with the vertex set I(R)* and two distinct vertices I and J are adjacent if and only if I ∩ J ≠ 0. In this paper, we study some connections between the graph-theoretic properties of this graph and some algebraic properties of rings. We characterize all rings whose intersection graphs of ideals are not connected. Also we determine all rings whose clique number of the intersection graphs of ideals is finite. Among other results, it is shown that for a ring R, if the clique number of G(R) is finite, then the chromatic number is finite and if R is a reduced ring, then both are equal.

2013 ◽  
Vol 12 (04) ◽  
pp. 1250199 ◽  
Author(s):  
T. ASIR ◽  
T. TAMIZH CHELVAM

The intersection graph ITΓ(R) of gamma sets in the total graph TΓ(R) of a commutative ring R, is the undirected graph with vertex set as the collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if u ∩ v ≠ ∅. Tamizh Chelvam and Asir [The intersection graph of gamma sets in the total graph I, to appear in J. Algebra Appl.] studied about ITΓ(R) where R is a commutative Artin ring. In this paper, we continue our interest on ITΓ(R) and actually we study about Eulerian, Hamiltonian and pancyclic nature of ITΓ(R). Further, we focus on certain graph theoretic parameters of ITΓ(R) like the independence number, the clique number and the connectivity of ITΓ(R). Also, we obtain both vertex and edge chromatic numbers of ITΓ(R). In fact, it is proved that if R is a finite commutative ring, then χ(ITΓ(R)) = ω(ITΓ(R)). Having proved that ITΓ(R) is weakly perfect for all finite commutative rings, we further characterize all finite commutative rings for which ITΓ(R) is perfect. In this sequel, we characterize all commutative Artin rings for which ITΓ(R) is of class one (i.e. χ′(ITΓ(R)) = Δ(ITΓ(R))). Finally, it is proved that the vertex connectivity and edge connectivity of ITΓ(R) are equal to the degree of any vertex in ITΓ(R).


10.37236/1805 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Seog-Jin Kim ◽  
Alexandr Kostochka ◽  
Kittikorn Nakprasit

Let $G$ be the intersection graph of a finite family of convex sets obtained by translations of a fixed convex set in the plane. We show that every such graph with clique number $k$ is $(3k-3)$-degenerate. This bound is sharp. As a consequence, we derive that $G$ is $(3k-2)$-colorable. We show also that the chromatic number of every intersection graph $H$ of a family of homothetic copies of a fixed convex set in the plane with clique number $k$ is at most $6k-6$.


2019 ◽  
Vol 18 (04) ◽  
pp. 1950068
Author(s):  
B. Miraftab ◽  
R. Nikandish

Let [Formula: see text] be a group. The co-maximal graph of [Formula: see text], denoted by [Formula: see text], is a graph whose vertices are nontrivial elements of [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent in [Formula: see text] if and only if [Formula: see text]. In this paper, we study some connections between the graph-theoretic properties of this graph and some algebraic properties of groups. For instance, we characterized all groups whose co-maximal graphs are connected and we show that if [Formula: see text] has no isolated vertex, then [Formula: see text] is connected with diameter at most 2. Moreover, we classify all groups whose co-maximal graphs are complete. Also, some results on the clique number and chromatic number of a co-maximal graph are given. In addition, the co-maximal graphs of abelian groups are studied.


2013 ◽  
Vol 12 (05) ◽  
pp. 1250218 ◽  
Author(s):  
ERGÜN YARANERI

Let V be a left R-module where R is a (not necessarily commutative) ring with unit. The intersection graph [Formula: see text] of proper R-submodules of V is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper R-submodules of V, and there is an edge between two distinct vertices U and W if and only if U ∩ W ≠ 0. We study these graphs to relate the combinatorial properties of [Formula: see text] to the algebraic properties of the R-module V. We study connectedness, domination, finiteness, coloring, and planarity for [Formula: see text]. For instance, we find the domination number of [Formula: see text]. We also find the chromatic number of [Formula: see text] in some cases. Furthermore, we study cycles in [Formula: see text], and complete subgraphs in [Formula: see text] determining the structure of V for which [Formula: see text] is planar.


2012 ◽  
Vol 11 (01) ◽  
pp. 1250019 ◽  
Author(s):  
S. AKBARI ◽  
H. A. TAVALLAEE ◽  
S. KHALASHI GHEZELAHMAD

Let R be a ring with identity and M be a unitary left R-module. The intersection graph of an R-moduleM, denoted by G(M), is defined to be the undirected simple graph whose vertices are in one to one correspondence with all non-trivial submodules of M and two distinct vertices are adjacent if and only if the corresponding submodules of M have nonzero intersection. We investigate the interplay between the module-theoretic properties of M and the graph-theoretic properties of G(M). We characterize all modules for which the intersection graph of submodules is connected. Also the diameter and the girth of G(M) are determined. We study the clique number and the chromatic number of G(M). Among other results, it is shown that if G(M) is a bipartite graph, then G(M) is a star graph.


2014 ◽  
Vol 06 (03) ◽  
pp. 1450036
Author(s):  
Mojgan Afkhami ◽  
Kazem Khashyarmanesh

Let (P, ≤) be a partially ordered set (poset, briefly) with a least element 0. The intersection graph of ideal of P, denoted by G(P), is a graph whose vertices are all non-trivial ideals of P and two distinct vertices I and J are adjacent if and only if I ∩ J ≠ {0}. In this paper, we study some relations between the algebraic properties of posets and graph-theoretic properties of G(P). We investigate the connectivity, diameter, girth and planarity of the intersection graph. Also, among the other things, we show that if the clique number of G(P) is finite, then P is finite too.


2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.


2014 ◽  
Vol 21 (02) ◽  
pp. 249-256 ◽  
Author(s):  
G. Aalipour ◽  
S. Akbari ◽  
M. Behboodi ◽  
R. Nikandish ◽  
M. J. Nikmehr ◽  
...  

Let R be a commutative ring and 𝔸(R) be the set of ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸(R)* = 𝔸(R)\{(0)} and two distinct vertices I and J are adjacent if and only if IJ = (0). Here, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. It is shown that if R is an Artinian ring and ω (𝔸𝔾(R)) = 2, then R is Gorenstein. Also, we investigate commutative rings whose annihilating-ideal graphs are complete or bipartite.


2015 ◽  
Vol 14 (06) ◽  
pp. 1550079 ◽  
Author(s):  
M. J. Nikmehr ◽  
S. Khojasteh

Let R be a commutative ring with identity, I its proper ideal and M be a unitary R-module. In this paper, we introduce and study a kind of graph structure of an R-module M with respect to proper ideal I, denoted by ΓI(RM) or simply ΓI(M). It is the (undirected) graph with the vertex set M\{0} and two distinct vertices x and y are adjacent if and only if [x : M][y : M] ⊆ I. Clearly, the zero-divisor graph of R is a subgraph of Γ0(R); this is an important result on the definition. We prove that if ann R(M) ⊆ I and H is the subgraph of ΓI(M) induced by the set of all non-isolated vertices, then diam (H) ≤ 3 and gr (ΓI(M)) ∈ {3, 4, ∞}. Also, we prove that if Spec (R) and ω(Γ Nil (R)(M)) are finite, then χ(Γ Nil (R)(M)) ≤ ∣ Spec (R)∣ + ω(Γ Nil (R)(M)). Moreover, for a secondary R-module M and prime ideal P, we determine the chromatic number and the clique number of ΓP(M), where ann R(M) ⊆ P. Among other results, it is proved that for a semisimple R-module M with ann R(M) ⊆ I, ΓI(M) is a forest if and only if ΓI(M) is a union of isolated vertices or a star.


2015 ◽  
Vol 14 (05) ◽  
pp. 1550065 ◽  
Author(s):  
S. Akbari ◽  
F. Heydari ◽  
M. Maghasedi

Let G be a group. The intersection graph of G, denoted by Γ(G), is the graph whose vertex set is the set of all nontrivial proper subgroups of G and two distinct vertices H and K are adjacent if and only if H ∩ K ≠ 1. In this paper, we show that the girth of Γ(G) is contained in the set {3, ∞}. We characterize all solvable groups whose intersection graphs are triangle-free. Moreover, we show that if G is finite and Γ(G) is triangle-free, then G is solvable. Also, we prove that if Γ(G) is a triangle-free graph, then it is a disjoint union of some stars. Among other results, we classify all abelian groups whose intersection graphs are complete. Finally, we study the intersection graphs of cyclic groups.


Sign in / Sign up

Export Citation Format

Share Document