The spectrum subgraph of the annihilating-ideal graph of a commutative ring

2015 ◽  
Vol 14 (08) ◽  
pp. 1550130
Author(s):  
R. Taheri ◽  
M. Behboodi ◽  
A. Tehranian

In this paper we introduce and study the spectrum graph of a commutative ring R, denoted by 𝔸𝔾s(R), that is, the graph whose vertices are all non-zero prime ideals of R with non-zero annihilator and two distinct vertices P1, P2 are adjacent if and only if P1P2 = (0). This is an induced subgraph of the annihilating-ideal graph 𝔸𝔾(R) of R. Among other results, we present the structures of all graphs which can be realized as the spectrum graph of a commutative ring. Then we show that for a non-domain Noetherian ring R, 𝔸𝔾s(R), is a connected graph if and only if 𝔸𝔾s(R) is a star graph if and only if 𝔸𝔾s(R) ≅ K1, K2 or K1,∞, where Kn is a complete graph with n vertices and K1,∞ is a star graph with infinite vertices. Also, we completely characterize the spectrum graphs of Artinian rings. Finally, as an application, we present some relationships between the annihilating-ideal graph and its spectrum subgraph.

Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2011 ◽  
Vol 10 (04) ◽  
pp. 665-674
Author(s):  
LI CHEN ◽  
TONGSUO WU

Let p be a prime number. Let G = Γ(R) be a ring graph, i.e. the zero-divisor graph of a commutative ring R. For an induced subgraph H of G, let CG(H) = {z ∈ V(G) ∣N(z) = V(H)}. Assume that in the graph G there exists an induced subgraph H which is isomorphic to the complete graph Kp-1, a vertex c ∈ CG(H), and a vertex z such that d(c, z) = 3. In this paper, we characterize the finite commutative rings R whose graphs G = Γ(R) have this property (called condition (Kp)).


1988 ◽  
Vol 30 (3) ◽  
pp. 293-300 ◽  
Author(s):  
A.-J. Taherizadeh

In his paper [1], M. Brodmann showed that if M is a1 finitely generated module over the commutative Noetherian ring R (with identity) and a is an ideal of R then the sequence of sets {Ass(M/anM)}n∈ℕ and {Ass(an−1M/anM)}n∈ℕ (where ℕ denotes the set of positive integers) are eventually constant. Since then, the theory of asymptotic prime divisors has been studied extensively: in [5], Chapters 1 and 2], for example, various results concerning the eventual stable values of Ass(R/an;) and Ass(an−1/an), denoted by A*(a) and B*(a) respectively, are discussed. It is worth mentioning that the above mentioned results of Brodmann still hold if one assumes only that A is a commutative ring (with identity) and M is a Noetherian A-module, and AssA(M), in this situation, is regarded as the set of prime ideals belonging to the zero submodule of M for primary decomposition.


2018 ◽  
Vol 17 (03) ◽  
pp. 1850050 ◽  
Author(s):  
Avinash Patil ◽  
B. N. Waphare

For a *-ring [Formula: see text], we associate a simple undirected graph [Formula: see text] having all nonzero left zero-divisors of [Formula: see text] as vertices and, two vertices [Formula: see text] and [Formula: see text] are adjacent if [Formula: see text]. In case of Artinian *-rings and Rickart *-rings, characterizations are obtained for those *-rings having [Formula: see text] a complete graph or a star graph, and sufficient conditions are obtained for [Formula: see text] to be connected and also for [Formula: see text] to be disconnected. For a Rickart *-ring [Formula: see text], we characterize the girth of [Formula: see text] and prove a sort of Beck’s conjecture.


Author(s):  
Fryda Arum Pratama ◽  
Liliek Susilowati ◽  
Moh. Imam Utoyo

Research on the local adjacency metric dimension has not been found in all operations of the graph, one of them is comb product graph. The purpose of this research was to determine the local adjacency metric dimension of k-comb product graph and level  comb product graph between any connected graph G and H. In this research graph G and graph H such as cycle graph, complete graph, path graph, and star graph. K-comb product graph between any graph G and H denoted by GokH. While level k comb product graph between any graph G and H denoted by GokH.In this research, local adjacency metric dimension of GokSm graph only dependent to multiplication of the cardinality of V(G) and many of k value, while GokKm graph and GokCm graph is dependent to dominating number of G and multiplication of the cardinality of V(G), many of k value, and local adjacency metric dimension of Km graph or Cm graph. And then, local adjacency metric dimension of GokSm graph only dependent to the cardinality of V(Gok-1Sm), while GokKm graph and GokCm graph is dependent to dominating number of G and multiplication of the local adjacency metric dimension of Km graph or Cm graph with cardinality of V(Gok-1Km) or V(Gok-1Cm). 


2013 ◽  
Vol 89 (1) ◽  
pp. 132-140 ◽  
Author(s):  
S. AKBARI ◽  
F. HEYDARI

AbstractLet $R$ be a ring and $Z(R)$ be the set of all zero-divisors of $R$. The total graph of $R$, denoted by $T(\Gamma (R))$ is a graph with all elements of $R$ as vertices, and two distinct vertices $x, y\in R$ are adjacent if and only if $x+ y\in Z(R)$. Let the regular graph of $R$, $\mathrm{Reg} (\Gamma (R))$, be the induced subgraph of $T(\Gamma (R))$ on the regular elements of $R$. In 2008, Anderson and Badawi proved that the girth of the total graph and the regular graph of a commutative ring are contained in the set $\{ 3, 4, \infty \} $. In this paper, we extend this result to an arbitrary ring (not necessarily commutative). We also prove that if $R$ is a reduced left Noetherian ring and $2\not\in Z(R)$, then the chromatic number and the clique number of $\mathrm{Reg} (\Gamma (R))$ are the same and they are ${2}^{r} $, where $r$ is the number of minimal prime ideals of $R$. Among other results, we show that if $R$ is a semiprime left Noetherian ring and $\mathrm{Reg} (R)$ is finite, then $R$ is finite.


Filomat ◽  
2012 ◽  
Vol 26 (3) ◽  
pp. 623-629 ◽  
Author(s):  
David Anderson ◽  
Shaban Ghalandarzadeh ◽  
Sara Shirinkam ◽  
Parastoo Rad

For a commutative ring R with identity, the ideal-based zero-divisor graph, denoted by ?I (R), is the graph whose vertices are {x ? R\I|xy ? I for some y ? R\I}, and two distinct vertices x and y are adjacent if and only if xy?I. In this paper, we investigate an annihilator ideal-based zero-divisor graph, denoted by ?Ann(M)(R), by replacing the ideal I with the annihilator ideal Ann(M) for an R-module M. We also study the relationship between the diameter of ?Ann(M) (R) and the minimal prime ideals of Ann(M). In addition, we determine when ?Ann(M)(R) is complete. In particular, we prove that for a reduced R-module M, ?Ann(M) (R) is a complete graph if and only if R ? Z2?Z2 and M ? M1?M2 for M1 and M2 nonzero Z2-modules.


Filomat ◽  
2017 ◽  
Vol 31 (10) ◽  
pp. 2933-2941 ◽  
Author(s):  
Unsal Tekir ◽  
Suat Koc ◽  
Kursat Oral

In this paper, we present a new classes of ideals: called n-ideal. Let R be a commutative ring with nonzero identity. We define a proper ideal I of R as an n-ideal if whenever ab ? I with a ? ?0, then b ? I for every a,b ? R. We investigate some properties of n-ideals analogous with prime ideals. Also, we give many examples with regard to n-ideals.


2019 ◽  
Vol 29 (2) ◽  
pp. 103-119
Author(s):  
Aleksandr A. Nechaev ◽  
Vadim N. Tsypyschev

Abstract The possibility to generalize the notion of a linear recurrent sequence (LRS) over a commutative ring to the case of a LRS over a non-commutative ring is discussed. In this context, an arbitrary bimodule AMB over left- and right-Artinian rings A and B, respectively, is associated with the equivalent bimodule of translations CMZ, where C is the multiplicative ring of the bimodule AMB and Z is its center, and the relation between the quasi-Frobenius conditions for the bimodules AMB and CMZ is studied. It is demonstrated that, in the general case, the fact that AMB is a quasi-Frobenius bimodule does not imply the validity of the quasi-Frobenius condition for the bimodule CMZ. However, under some additional assumptions it can be shown that if CMZ is a quasi-Frobenius bimodule, then the bimodule AMB is quasi-Frobenius as well.


2014 ◽  
Vol 14 (01) ◽  
pp. 1550008 ◽  
Author(s):  
A. Ghorbani ◽  
Z. Nazemian

In this paper, we define and study a valuation dimension for commutative rings. The valuation dimension is a measure of how far a commutative ring deviates from being valuation. It is shown that a ring R with valuation dimension has finite uniform dimension. We prove that a ring R is Noetherian (respectively, Artinian) if and only if the ring R × R has (respectively, finite) valuation dimension if and only if R has (respectively, finite) valuation dimension and all cyclic uniserial modules are Noetherian (respectively, Artinian). We show that the class of all rings of finite valuation dimension strictly lies between the class of Artinian rings and the class of semi-perfect rings.


Sign in / Sign up

Export Citation Format

Share Document