A new definition of conjugacy for semigroups

2018 ◽  
Vol 17 (02) ◽  
pp. 1850032 ◽  
Author(s):  
Janusz Konieczny

The conjugacy relation plays an important role in group theory. If [Formula: see text] and [Formula: see text] are elements of a group [Formula: see text], [Formula: see text] is conjugate to [Formula: see text] if [Formula: see text] for some [Formula: see text]. The group conjugacy extends to inverse semigroups in a natural way: for [Formula: see text] and [Formula: see text] in an inverse semigroup [Formula: see text], [Formula: see text] is conjugate to [Formula: see text] if [Formula: see text] and [Formula: see text] for some [Formula: see text]. In this paper, we define a conjugacy for an arbitrary semigroup [Formula: see text] that reduces to the inverse semigroup conjugacy if [Formula: see text] is an inverse semigroup. (None of the existing notions of conjugacy for semigroups has this property.) We compare our new notion of conjugacy with existing definitions, characterize the conjugacy in basic transformation semigroups and their ideals using the representation of transformations as directed graphs, and determine the number of conjugacy classes in these semigroups.

1969 ◽  
Vol 9 (1-2) ◽  
pp. 211-217 ◽  
Author(s):  
H. D'Alarcao

Extensions of semigroups have been studied from two points of view; ideal extensions and Schreier extension. In this paper another type of extension is considered for the class of inverse semigroups. The main result (Theorem 2) is stated in the form of the classical treatment of Schreier extensions (see e.g.[7]). The motivation for the definition of idempotentseparating extension comes primarily from G. B. Preston's concept of a normal set of subsets of a semigroup [6]. The characterization of such extensions is applied to give another description of bisimple inverse ω-semigroups, which were first described by N. R. Reilly [8]. The main tool used in the proof of Theorem 2 is Preston's characterization of congruences on an inverse semigroup [5]. For the standard terminology used, the reader is referred to [1].


Author(s):  
E. R. DOMBI ◽  
N. D. GILBERT

AbstractWe study a construction of an HNN extension for inverse semigroups with zero. We prove a normal form for the elements of the universal group of an inverse semigroup that is categorical at zero, and use it to establish structural results for the universal group of an HNN extension. Our main application of the HNN construction is to show that graph inverse semigroups –including the polycyclic monoids –admit HNN decompositions in a natural way, and that this leads to concise presentations for them.


2004 ◽  
Vol 14 (01) ◽  
pp. 87-114 ◽  
Author(s):  
J. KELLENDONK ◽  
MARK V. LAWSON

A partial action of a group G on a set X is a weakening of the usual notion of a group action: the function G×X→X that defines a group action is replaced by a partial function; in addition, the existence of g·(h·x) implies the existence of (gh)·x, but not necessarily conversely. Such partial actions are extremely widespread in mathematics, and the main aim of this paper is to prove two basic results concerning them. First, we obtain an explicit description of Exel's universal inverse semigroup [Formula: see text], which has the property that partial actions of the group G give rise to actions of the inverse semigroup [Formula: see text]. We apply this result to the theory of graph immersions. Second, we prove that each partial group action is the restriction of a universal global group action. We describe some applications of this result to group theory and the theory of E-unitary inverse semigroups.


2016 ◽  
Vol 94 (3) ◽  
pp. 457-463 ◽  
Author(s):  
PETER R. JONES

An algebra has the Howson property if the intersection of any two finitely generated subalgebras is again finitely generated. A simple necessary and sufficient condition is given for the Howson property to hold on an inverse semigroup with finitely many idempotents. In addition, it is shown that any monogenic inverse semigroup has the Howson property.


1988 ◽  
Vol 31 (3) ◽  
pp. 463-467 ◽  
Author(s):  
David Easdown

In any extension theory for semigroups one must determine the basic building blocks and then discover how they fit together to create more complicated semigroups. For example, in group theory the basic building blocks are simple groups. In semigroup theory however there are several natural choices. One that has received considerable attention, particularly since the seminal work on inverse semigroups by Munn ([14, 15]), is the notion of a fundamental semigroup. A semigroup is called fundamental if it cannot be [shrunk] homomorphically without collapsing some of its idempotents (see below for a precise definition).


1978 ◽  
Vol 19 (1) ◽  
pp. 59-65 ◽  
Author(s):  
H. Mitsch

The natural order of an inverse semigroup defined by a ≤ b ⇔ a′b = a′a has turned out to be of great importance in describing the structure of it. In this paper an order-theoretical point of view is adopted to characterise inverse semigroups. A complete description is given according to the type of partial order an arbitrary inverse semigroup S can possibly admit: a least element of (S, ≤) is shown to be the zero of (S, ·); the existence of a greatest element is equivalent to the fact, that (S, ·) is a semilattice; (S, ≤) is directed downwards, if and only if S admits only the trivial group-homomorphic image; (S, ≤) is totally ordered, if and only if for all a, b ∈ S, either ab = ba = a or ab = ba = b; a finite inverse semigroup is a lattice, if and only if it admits a greatest element. Finally formulas concerning the inverse of a supremum or an infimum, if it exists, are derived, and right-distributivity and left-distributivity of multiplication with respect to union and intersection are shown to be equivalent.


2001 ◽  
Vol 44 (3) ◽  
pp. 549-569 ◽  
Author(s):  
Benjamin Steinberg

AbstractAdapting the theory of the derived category to ordered groupoids, we prove that every ordered functor (and thus every inverse and regular semigroup homomorphism) factors as an enlargement followed by an ordered fibration. As an application, we obtain Lawson’s version of Ehresmann’s Maximum Enlargement Theorem, from which can be deduced the classical theory of idempotent-pure inverse semigroup homomorphisms and $E$-unitary inverse semigroups.AMS 2000 Mathematics subject classification: Primary 20M18; 20L05; 20M17


Author(s):  
Dmitrii Azarov

The subject of this research is the economic relations formed as a result of operation and development of military-industrial complex, which affect economic growth of the country. The object of this research is the military-industrial complex. The goal consists in determination of peculiarities of functionality of military-industrial complex. The author explores such aspects of the topic, as the evolution of approaches towards studying the military-industrial complex, as well as nuances of its functionality. Special attention is paid to the structure of military-industrial complex, highlighting its key components and determining interaction between them. The author’s main contribution lies in the proposed interpretation of the military-industrial complex, formulated as a result of critical analysis of relevant scientific representations on its essence, and reflecting the specifics of its functionality. The novelty consists in the analysis and systematization of scientific approaches to definition of military-industrial complex; its structural perception in form of modified scheme of O. Williamson with indication of major stakeholders and relations between them, which is based on the concept of “iron triangle”; identification of basic transformation trends of the military-industrial complex, as well as characteristics that differentiate it from other economic macro-sectors.


1977 ◽  
Vol 18 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Bridget Bos Baird

All topological spaces here are assumed to be T2. The collection F(Y)of all homeomorphisms whose domains and ranges are closed subsets of a topological space Y is an inverse semigroup under the operation of composition. We are interested in the general problem of getting some information about the subsemigroups of F(Y) whenever Y is a compact metric space. Here, we specifically look at the problem of determining those spaces X with the property that F(X) is isomorphic to a subsemigroup of F(Y). The main result states that if X is any first countable space with an uncountable number of points, then the semigroup F(X) can be embedded into the semigroup F(Y) if and only if either X is compact and Y contains a copy of X, or X is noncompact and locally compact and Y contains a copy of the one-point compactification of X.


Sign in / Sign up

Export Citation Format

Share Document