scholarly journals Group gradings and actions of pointed Hopf algebras

Author(s):  
Yuri Bahturin ◽  
Susan Montgomery

We study actions of pointed Hopf algebras on matrix algebras. Our approach is based on known facts about group gradings of matrix algebras [Y. Bahturin, S. Sehgal and M. Zaicev, Group gradings on associative algebras, J. Algebra 241 (2001) 667–698] and other sources.

2019 ◽  
Vol 18 (09) ◽  
pp. 1950162
Author(s):  
A. S. Gordienko

An algebra [Formula: see text] with a generalized [Formula: see text]-action is a generalization of an [Formula: see text]-module algebra where [Formula: see text] is just an associative algebra with [Formula: see text] and a relaxed compatibility condition between the multiplication in [Formula: see text] and the [Formula: see text]-action on [Formula: see text] holds. At first glance, this notion may appear too general, however, it enables to work with algebras endowed with various kinds of additional structures (e.g. comodule algebras over Hopf algebras, graded algebras, algebras with an action of a semigroup by anti-endomorphisms). This approach proves to be especially fruitful in the theory of polynomial identities. We show that if [Formula: see text] is a finite dimensional (not necessarily associative) algebra over a field of characteristic [Formula: see text] and [Formula: see text] is simple with respect to a generalized [Formula: see text]-action, then there exists [Formula: see text] where [Formula: see text] is the sequence of codimensions of polynomial [Formula: see text]-identities of [Formula: see text]. In particular, if [Formula: see text] is a finite dimensional (not necessarily group graded) graded-simple algebra, then there exists [Formula: see text] where [Formula: see text] is the sequence of codimensions of graded polynomial identities of [Formula: see text]. In addition, we study the free-forgetful adjunctions corresponding to (not necessarily group) gradings and generalized [Formula: see text]-actions.


2009 ◽  
Vol 213 (7) ◽  
pp. 1399-1417 ◽  
Author(s):  
Mitja Mastnak ◽  
Sarah Witherspoon

2020 ◽  
pp. 1-14
Author(s):  
NICOLÁS ANDRUSKIEWITSCH ◽  
DIRCEU BAGIO ◽  
SARADIA DELLA FLORA ◽  
DAIANA FLÔRES

Abstract We present new examples of finite-dimensional Nichols algebras over fields of characteristic 2 from braided vector spaces that are not of diagonal type, admit realizations as Yetter–Drinfeld modules over finite abelian groups, and are analogous to Nichols algebras of finite Gelfand–Kirillov dimension in characteristic 0. New finite-dimensional pointed Hopf algebras over fields of characteristic 2 are obtained by bosonization with group algebras of suitable finite abelian groups.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250191
Author(s):  
XIAOLAN YU ◽  
YINHUO ZHANG

We give the full structure of the Ext algebra of any Nichols algebra of Cartan type A2 by using the Hochschild–Serre spectral sequence. As an application, we show that the pointed Hopf algebras [Formula: see text] with Dynkin diagrams of type A, D, or E, except for A1 and A1 × A1 with the order NJ > 2 for at least one component J, are wild.


Author(s):  
Ken Brown ◽  
Angela Ankomaah Tabiri

AbstractLet $\mathcal {C}$ C be a decomposable plane curve over an algebraically closed field k of characteristic 0. That is, $\mathcal {C}$ C is defined in k2 by an equation of the form g(x) = f(y), where g and f are polynomials of degree at least two. We use this data to construct three affine pointed Hopf algebras, A(x, a, g), A(y, b, f) and A(g, f), in the first two of which g [resp. f ] are skew primitive central elements, with the third being a factor of the tensor product of the first two. We conjecture that A(g, f) contains the coordinate ring $\mathcal {O}(\mathcal {C})$ O ( C ) of $\mathcal {C}$ C as a quantum homogeneous space, and prove this when each of g and f has degree at most five or is a power of the variable. We obtain many properties of these Hopf algebras, and show that, for small degrees, they are related to previously known algebras. For example, when g has degree three A(x, a, g) is a PBW deformation of the localisation at powers of a generator of the downup algebra A(− 1,− 1,0). The final section of the paper lists some questions for future work.


2011 ◽  
Vol 325 (1) ◽  
pp. 305-320 ◽  
Author(s):  
N. Andruskiewitsch ◽  
F. Fantino ◽  
M. Graña ◽  
L. Vendramin

1999 ◽  
Vol 128 (2) ◽  
pp. 361-367 ◽  
Author(s):  
M. Beattie ◽  
S. Dăscălescu ◽  
L. Grünenfelder

Sign in / Sign up

Export Citation Format

Share Document