Embeddings in matrix wreath products of algebras

Author(s):  
Adel Alahmadi ◽  
Hamed Alsulami ◽  
S. K. Jain ◽  
Efim Zelmanov

We use matrix wreath products to show that (1) every countable dimensional nonsingular algebra is embeddable in a finitely generated nonsingular algebra, (2) for every infinite dimensional finitely generated PI-algebra [Formula: see text] there exists an epimorphism [Formula: see text], where [Formula: see text] and the algebra [Formula: see text] is not representable by matrices over a commutative algebra. If the algebra [Formula: see text] is commutative, then [Formula: see text] satisfies the ACC on two-sided ideals as in the recent examples of Greenfeld and Rowen.

2021 ◽  
pp. 1-36
Author(s):  
ARIE LEVIT ◽  
ALEXANDER LUBOTZKY

Abstract We prove that all invariant random subgroups of the lamplighter group L are co-sofic. It follows that L is permutation stable, providing an example of an infinitely presented such group. Our proof applies more generally to all permutational wreath products of finitely generated abelian groups. We rely on the pointwise ergodic theorem for amenable groups.


2009 ◽  
Vol 19 (03) ◽  
pp. 287-303 ◽  
Author(s):  
ISABEL GOFFA ◽  
ERIC JESPERS ◽  
JAN OKNIŃSKI

Let A be a finitely generated commutative algebra over a field K with a presentation A = K 〈X1,…, Xn | R〉, where R is a set of monomial relations in the generators X1,…, Xn. So A = K[S], the semigroup algebra of the monoid S = 〈X1,…, Xn | R〉. We characterize, purely in terms of the defining relations, when A is an integrally closed domain, provided R contains at most two relations. Also the class group of such algebras A is calculated.


2008 ◽  
Vol 60 (5) ◽  
pp. 1001-1009 ◽  
Author(s):  
Yves de Cornulier ◽  
Romain Tessera ◽  
Alain Valette

AbstractOur main result is that a finitely generated nilpotent group has no isometric action on an infinite-dimensional Hilbert space with dense orbits. In contrast, we construct such an action with a finitely generated metabelian group.


2020 ◽  
pp. 1-12 ◽  
Author(s):  
ADRIEN LE BOUDEC

We consider the finitely generated groups acting on a regular tree with almost prescribed local action. We show that these groups embed as cocompact irreducible lattices in some locally compact wreath products. This provides examples of finitely generated simple groups quasi-isometric to a wreath product $C\wr F$ , where $C$ is a finite group and $F$ a non-abelian free group.


2019 ◽  
Vol 62 (3) ◽  
pp. 733-738 ◽  
Author(s):  
Be'eri Greenfeld

AbstractWe prove two approximations of the open problem of whether the adjoint group of a non-nilpotent nil ring can be finitely generated. We show that the adjoint group of a non-nilpotent Jacobson radical cannot be boundedly generated and, on the other hand, construct a finitely generated, infinite-dimensional nil algebra whose adjoint group is generated by elements of bounded torsion.


2018 ◽  
Vol 17 (02) ◽  
pp. 1850023 ◽  
Author(s):  
L. Izelgue ◽  
O. Ouzzaouit

Let [Formula: see text] and [Formula: see text] be two rings, [Formula: see text] an ideal of [Formula: see text] and [Formula: see text] be a ring homomorphism. The ring [Formula: see text] is called the amalgamation of [Formula: see text] with [Formula: see text] along [Formula: see text] with respect to [Formula: see text]. It was proposed by D’anna and Fontana [Amalgamated algebras along an ideal, Commutative Algebra and Applications (W. de Gruyter Publisher, Berlin, 2009), pp. 155–172], as an extension for the Nagata’s idealization, which was originally introduced in [Nagata, Local Rings (Interscience, New York, 1962)]. In this paper, we establish necessary and sufficient conditions under which [Formula: see text], and some related constructions, is either a Hilbert ring, a [Formula: see text]-domain or a [Formula: see text]-ring in the sense of Adams [Rings with a finitely generated total quotient ring, Canad. Math. Bull. 17(1) (1974)]. By the way, we investigate the transfer of the [Formula: see text]-property among pairs of domains sharing an ideal. Our results provide original illustrating examples.


2020 ◽  
Vol 23 (1) ◽  
pp. 479-483
Author(s):  
Cam Thi Hong Bui ◽  
Tri Minh Nguyen

The local cohomology theory plays an important role in commutative algebra and algebraic geometry. The I-cofiniteness of local cohomology modules is one of interesting properties which has been studied by many mathematicians. The I-cominimax modules is an extension of I-cofinite modules which was introduced by Hartshorne. An R-module M is I-cominimax if Supp_R(M)\subseteq V(I) and Ext^i_R(R/I,M) is minimax for all  i\ge 0. In this paper, we show some conditions such that the generalized local cohomology module H^i_I(M,N) is I-cominimax for all i\ge 0. We show that if H^i_I(M,K) is I-cofinite for all i<t and all finitely generated R-module K, then  H^i_I(M,N) is I-cominimax for all i<t  and all minimax R-module N.  If M is a finitely generated R-module, N is a minimax R-module and t is a non-negative integer such that  dim Supp_R(H^i_I(M,N))\le 1 for all i<t then H^i_I(M,N) is I-cominimax for all  i<t. When  dim R/I\le 1 and H^i_I(N) is I-cominimax for all  i\ge 0 then H^i_I(M,N) is I-cominimax for all i\ge 0.


2009 ◽  
Vol 104 (2) ◽  
pp. 205 ◽  
Author(s):  
Kohji Yanagawa

Let $A = \bigoplus_{i\in \mathsf{N}}A_i$ be a Koszul algebra over a field $K = A_0$, and $*\operatorname{mod} A$ the category of finitely generated graded left $A$-modules. The linearity defect $\mathrm{ld}_A(M)$ of $M \in *\operatorname{mod} A$ is an invariant defined by Herzog and Iyengar. An exterior algebra $E$ is a Koszul algebra which is the Koszul dual of a polynomial ring. Eisenbud et al. showed that $\mathrm{ld}_E(M) < \infty$ for all $M \in *\operatorname{mod} E$. Improving this, we show that the Koszul dual $A^!$ of a Koszul commutative algebra $A$ satisfies the following. Let $M \in *\operatorname{mod} A^!$. If $\{\dim_K M_i \mid i \in {\mathsf Z}\}$ is bounded, then $\mathrm{ld}_{A^!}(M) < \infty$. If $A$ is complete intersection, then $\mathrm{reg}_{A^!}(M) < \infty$ and $\mathrm{ld}_{A^!}(M) < \infty$ for all $M \in *\operatorname{mod} A^!$. If $E=\bigwedge \langle y_1, \ldots, y_n\rangle$ is an exterior algebra, then $\mathrm{ld}_E(M)\leq c^{n!} 2^{(n-1)!}$ for $M \in *\operatorname{mod} E$ with $c := \max \{\dim_K M_i \mid i \in{\mathsf Z}\}$.


Sign in / Sign up

Export Citation Format

Share Document