Automorphism group and fixing number of the orthogonality graph based on rank one upper triangular matrices

Author(s):  
Shikun Ou ◽  
Yanqi Fan ◽  
Fenglei Tian

The orthogonality graph [Formula: see text] of a ring [Formula: see text] is the undirected graph with vertex set consisting of all nonzero two-sided zero divisors of [Formula: see text], in which for two vertices [Formula: see text] and [Formula: see text] (needless distinct), [Formula: see text] is an edge if and only if [Formula: see text]. Let [Formula: see text], [Formula: see text] be the set of all [Formula: see text] matrices over a finite field [Formula: see text], and [Formula: see text] the subset of [Formula: see text] consisting of all rank one upper triangular matrices. In this paper, we describe the full automorphism group, and using the technique of generalized equivalent canonical form of matrices, we compute the fixing number of [Formula: see text], the induced subgraph of [Formula: see text] with vertex set [Formula: see text].

2016 ◽  
Vol 31 ◽  
pp. 774-793 ◽  
Author(s):  
Shikun Ou ◽  
Jin Zhong

Let $F$ be a finite field, $n\geqslant 2$ an arbitrary integer, $\mathcal{M}_n(F)$ the set of all $n\times n$ matrices over $F$, and $\mathcal{U}_n^1(F)$ the set of all rank one upper triangular matrices of order $n$. For $\mathcal{S}\subseteq\mathcal{M}_n(F)$, denote $C(\mathcal{S})=\{X\in \mathcal{S} |\ XA=AX \ \hbox{for all}\ A\in \mathcal{S}\}$. The commuting graph of $\mathcal{S}$, denoted by $\Gamma(\mathcal{S})$, is the simple undirected graph with vertex set $\mathcal{S}\setminus C(\mathcal{S})$ in which for every two distinct vertices $A$ and $B$, $A\sim B$ is an edge if and only if $AB=BA$. In this paper, it is shown that any graph automorphism of $\Gamma(\mathcal{U}_n^1(F))$ with $n\geqslant 3$ can be decomposed into the product of an extremal automorphism, an inner automorphism, a field automorphism and a local scalar multiplication.


Author(s):  
Xinlei Wang ◽  
Dein Wong ◽  
Fenglei Tian

Let [Formula: see text] be a finite field with [Formula: see text] elements, [Formula: see text] a positive integer, [Formula: see text] the semigroup of all [Formula: see text] upper triangular matrices over [Formula: see text] under matrix multiplication, [Formula: see text] the group of all invertible matrices in [Formula: see text], [Formula: see text] the quotient group of [Formula: see text] by its center. The one-divisor graph of [Formula: see text], written as [Formula: see text], is defined to be a directed graph with [Formula: see text] as vertex set, and there is a directed edge from [Formula: see text] to [Formula: see text] if and only if [Formula: see text], i.e. [Formula: see text] and [Formula: see text] are, respectively, a left divisor and a right divisor of a rank one matrix in [Formula: see text]. The definition of [Formula: see text] is motivated by the definition of zero-divisor graph [Formula: see text] of [Formula: see text], which has vertex set of all nonzero zero-divisors in [Formula: see text] and there is a directed edge from a vertex [Formula: see text] to a vertex [Formula: see text] if and only if [Formula: see text], i.e. [Formula: see text]. The automorphism group of zero-divisor graph [Formula: see text] of [Formula: see text] was recently determined by Wang [A note on automorphisms of the zero-divisor graph of upper triangular matrices, Lin. Alg. Appl. 465 (2015) 214–220.]. In this paper, we characterize the automorphism group of one-divisor graph [Formula: see text] of [Formula: see text], proving that [Formula: see text], where [Formula: see text] is the automorphism group of field [Formula: see text], [Formula: see text] is a direct product of some symmetric groups. Besides, an application of automorphisms of [Formula: see text] is given in this paper.


2019 ◽  
Vol 19 (08) ◽  
pp. 2050161
Author(s):  
Long Wang ◽  
Xianwen Fang ◽  
Fenglei Tian

Let [Formula: see text] be a finite field, [Formula: see text] the ring of all [Formula: see text] upper triangular matrices over [Formula: see text], [Formula: see text] the set of all zero-divisors of [Formula: see text], i.e. [Formula: see text] consists of all [Formula: see text] upper triangular singular matrices over [Formula: see text]. The total graph of [Formula: see text], denoted by [Formula: see text], is a graph with all elements of [Formula: see text] as vertices, and two distinct vertices [Formula: see text] are adjacent if and only if [Formula: see text]. In this paper, we determine all automorphisms of the total graph [Formula: see text] of [Formula: see text].


2019 ◽  
Vol 19 (05) ◽  
pp. 2050086 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
K. Prabha Ananthi

Let [Formula: see text] be a k-dimensional vector space over a finite field [Formula: see text] with a basis [Formula: see text]. The nonzero component graph of [Formula: see text], denoted by [Formula: see text], is a simple undirected graph with vertex set as nonzero vectors of [Formula: see text] such that there is an edge between two distinct vertices [Formula: see text] if and only if there exists at least one [Formula: see text] along which both [Formula: see text] and [Formula: see text] have nonzero scalars. In this paper, we find the vertex connectivity and girth of [Formula: see text]. We also characterize all vector spaces [Formula: see text] for which [Formula: see text] has genus either 0 or 1 or 2.


Author(s):  
Hua Jiang ◽  
Dongming Zhu ◽  
Zhichao Xie ◽  
Shaowen Yao ◽  
Zhang-Hua Fu

Given an undirected graph, the Maximum k-plex Problem (MKP) is to find a largest induced subgraph in which each vertex has at most k−1 non-adjacent vertices. The problem arises in social network analysis and has found applications in many important areas employing graph-based data mining. Existing exact algorithms usually implement a branch-and-bound approach that requires a tight upper bound to reduce the search space. In this paper, we propose a new upper bound for MKP, which is a partitioning of the candidate vertex set with respect to the constructing solution. We implement a new branch-and-bound algorithm that employs the upper bound to reduce the number of branches. Experimental results show that the upper bound is very effective in reducing the search space. The new algorithm outperforms the state-of-the-art algorithms significantly on real-world massive graphs, DIMACS graphs and random graphs.


Author(s):  
Mai Hoang Bien ◽  
Do Hoang Viet

Let [Formula: see text] be a field and [Formula: see text] the general linear group of degree [Formula: see text] over [Formula: see text]. The intersection graph [Formula: see text] of [Formula: see text] is a simple undirected graph whose vertex set includes all nontrivial proper subgroups of [Formula: see text]. Two vertices [Formula: see text] and [Formula: see text] of [Formula: see text] are adjacent if [Formula: see text] and [Formula: see text]. In this paper, we show that if [Formula: see text] is a finite field containing at least three elements, then the diameter [Formula: see text] is [Formula: see text] or [Formula: see text]. We also classify [Formula: see text] according to [Formula: see text]. In case [Formula: see text] is infinite, we prove that [Formula: see text] is one-ended of diameter 2 and its unique end is thick.


Author(s):  
S. Karthik ◽  
S. N. Meera ◽  
K. Selvakumar

Let [Formula: see text] be a commutative ring with identity and [Formula: see text] be the set of all nonzero zero-divisors of [Formula: see text]. The annihilator graph of commutative ring [Formula: see text] is the simple undirected graph [Formula: see text] with vertices [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. The essential graph of [Formula: see text] is defined as the graph [Formula: see text] with the vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] is an essential ideal. In this paper, we classify all finite commutative rings with identity whose annihilator graph and essential graph have crosscap two.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050089
Author(s):  
V. Soleymanivarniab ◽  
A. Tehranian ◽  
R. Nikandish

Let [Formula: see text] be a commutative ring with nonzero identity. The annihilator graph of [Formula: see text], denoted by [Formula: see text], is the (undirected) graph whose vertex set is the set of all nonzero zero-divisors of [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. In this paper, we study the metric dimension of annihilator graphs associated with commutative rings and some metric dimension formulae for annihilator graphs are given.


Sign in / Sign up

Export Citation Format

Share Document