scholarly journals DG structure on the length 4 big from small construction

Author(s):  
Keller VandeBogert

The big from small construction was introduced by Kustin and Miller in [A. Kustin and M. Miller, Constructing big Gorenstein ideals from small ones, J. Algebra 85 (1983) 303–322] and can be used to construct resolutions of tightly double linked Gorenstein ideals. In this paper, we expand on the DG-algebra techniques introduced in [A. Kustin, Use DG methods to build a matrix factorization, preprint (2019), arXiv:1905.11435 ] and construct a DG [Formula: see text]-algebra structure on the length [Formula: see text] big from small construction. The techniques employed involve the construction of a morphism from a Tate-like complex to an acyclic DG [Formula: see text]-algebra exhibiting Poincaré duality. This induces homomorphisms which, after suitable modifications, satisfy a list of identities that end up perfectly encapsulating the required associativity and DG axioms of the desired product structure for the big from small construction.

2021 ◽  
pp. 1-8
Author(s):  
DANIEL KASPROWSKI ◽  
MARKUS LAND

Abstract Let $\pi$ be a group satisfying the Farrell–Jones conjecture and assume that $B\pi$ is a 4-dimensional Poincaré duality space. We consider topological, closed, connected manifolds with fundamental group $\pi$ whose canonical map to $B\pi$ has degree 1, and show that two such manifolds are s-cobordant if and only if their equivariant intersection forms are isometric and they have the same Kirby–Siebenmann invariant. If $\pi$ is good in the sense of Freedman, it follows that two such manifolds are homeomorphic if and only if they are homotopy equivalent and have the same Kirby–Siebenmann invariant. This shows rigidity in many cases that lie between aspherical 4-manifolds, where rigidity is expected by Borel’s conjecture, and simply connected manifolds where rigidity is a consequence of Freedman’s classification results.


2010 ◽  
Vol 17 (2) ◽  
pp. 391-404
Author(s):  
Mikael Vejdemo-Johansson

Abstract Kadeishvili's proof of theminimality theorem [T. Kadeishvili, On the homology theory of fiber spaces, Russ. Math. Surv. 35:3 (1980), 231–238] induces an algorithm for the inductive computation of an A ∞-algebra structure on the homology of a dg-algebra. In this paper, we prove that for one class of dg-algebras, the resulting computation will generate a complete A ∞-algebra structure after a finite amount of computational work.


2016 ◽  
Vol 152 (7) ◽  
pp. 1398-1420 ◽  
Author(s):  
Dan Petersen

We prove that the tautological ring of ${\mathcal{M}}_{2,n}^{\mathsf{ct}}$, the moduli space of $n$-pointed genus two curves of compact type, does not have Poincaré duality for any $n\geqslant 8$. This result is obtained via a more general study of the cohomology groups of ${\mathcal{M}}_{2,n}^{\mathsf{ct}}$. We explain how the cohomology can be decomposed into pieces corresponding to different local systems and how the tautological cohomology can be identified within this decomposition. Our results allow the computation of $H^{k}({\mathcal{M}}_{2,n}^{\mathsf{ct}})$ for any $k$ and $n$ considered both as $\mathbb{S}_{n}$-representation and as mixed Hodge structure/$\ell$-adic Galois representation considered up to semi-simplification. A consequence of our results is also that all even cohomology of $\overline{{\mathcal{M}}}_{2,n}$ is tautological for $n<20$, and that the tautological ring of $\overline{{\mathcal{M}}}_{2,n}$ fails to have Poincaré duality for all $n\geqslant 20$. This improves and simplifies results of the author and Orsola Tommasi.


1989 ◽  
Vol s2-39 (2) ◽  
pp. 271-284 ◽  
Author(s):  
P.H. Kropholler ◽  
M. A. Roller

2003 ◽  
Vol 2003 (38) ◽  
pp. 2425-2445 ◽  
Author(s):  
Heath Emerson

For every hyperbolic groupΓwith Gromov boundary∂Γ, one can form the cross productC∗-algebraC(∂Γ)⋊Γ. For each such algebra, we construct a canonicalK-homology class. This class induces a Poincaré duality mapK∗(C(∂Γ)⋊Γ)→K∗+1(C(∂Γ)⋊Γ). We show that this map is an isomorphism in the case ofΓ=𝔽2, the free group on two generators. We point out a direct connection between our constructions and the Baum-Connes conjecture and eventually use the latter to deduce our result.


Sign in / Sign up

Export Citation Format

Share Document