EFFECT ON PLANTAR PRESSURE DISTRIBUTION WITH WEARING DIFFERENT BASE SIZE OF HIGH-HEEL SHOES DURING WALKING AND SLOW RUNNING

2012 ◽  
Vol 12 (01) ◽  
pp. 1250018 ◽  
Author(s):  
LAN-YUEN GUO ◽  
CHIEN-FEN LIN ◽  
CHICH-HAUNG YANG ◽  
YI-YOU HOU ◽  
HUNG-LIN LIU ◽  
...  

High heeled shoes may alter the regular loading pattern of the plantar pressure, especially increased in the forefoot area. Walking with narrow base of high heeled shoes may induce the brisk acceleration of the supported leg due to instability that increases the force on the plantar area. Particularly, this phenomenon may be amplified while slow running, but never been investigated. Materials and Methods: Plantar pressures were measured for different specific area of foot using the Pedar-X system. The effects on plantar pressure with different sized bases (1.2× 1.2 cm2 and 2.2 × 3.5 cm2) of high-heeled shoe (7.8 cm in height) were examined while walking in thirteen healthy female subjects and during slow running in nine healthy female subjects. Results: The plantar pressures of the hallux and toe while wearing narrow base high heel were significantly (p < 0.05) greater than those when walking with wearing wide base one. For both narrow and wide base heels, significantly increased (p < 0.05) plantar pressure were found in the medial forefoot while slow running at 2.0 m/s as compared with walking at 1.0 m/s and 1.5 m/s. While slow running with wearing narrow base high heel indicated significantly (p < 0.05) increased plantar pressures in the medial, central and lateral forefoot and toes regions compared with those with wearing wide base one. Conclusion: The findings suggest that if individuals have to wear high heeled shoes, it would be better to select one with a wide based heel to avoid running in at any circumstance.

2019 ◽  
Vol 32 ◽  
Author(s):  
Paula Silva de Carvalho Chagas ◽  
Riuraly Caroline Barreiros Fortunato Rangel ◽  
Sulamita Saile de Jesus Oliveira Dornelas ◽  
Anderson Daibert Amaral ◽  
Flávio Augusto Teixeira Ronzani ◽  
...  

Abstract Introduction: Some peculiar features of Down Syndrome (DS), such as ligament laxity, hypotonia, delay in gait acquisition, among others, may generate alterations in the distribution of plantar pressures, modifying the plantar support. Objective: To verify whether there are differences in the evaluation of plantar pressure distributions in standing posture between the measurement instruments (Baropodometer, SAPO, and Radiography). Method: This was a cross-sectional study, evaluating ten children with SD and ten children with normal development (ND), aged from two to five years old. Bio-photogrammetry, baropodometry, and foot radiography were used to assess the plantar pressure distribution. Kappa analysis was used to evaluate the agreement index between the different instruments. Results: Children with DS and ND had a higher prevalence of pronated feet in all three instruments, with poor to substantial agreement among the instruments. Conclusion: According to this study instruments, there was a greater prevalence of pronated feet in the two groups . Differences in the evaluation of the distribution of plantar pressures in the standing posture between the Baropodometer, SAPO, and radiography were observed. These instruments should be used in a complementary manner, as they propose to evaluate different aspects of the feet alignment.


Author(s):  
Sharvindsing Karia ◽  
S. Parasuraman ◽  
M.K.A. Ahamed Khan ◽  
I. Elamvazuthi ◽  
Niranjan Debnath ◽  
...  

2003 ◽  
Vol 24 (4) ◽  
pp. 349-353 ◽  
Author(s):  
René E. Weijers ◽  
Geert H.I.M. Walenkamp ◽  
Henk van Mameren ◽  
Alphons G.H. Kessels

We test the premise that peak plantar pressure is located directly under the bony prominences in the forefoot region. The right foot of standing volunteers was examined in three different postures by a CT-scanner. The plantar pressure distribution was simultaneously recorded. The position of the metatarsal heads and the sesamoids could be related to the corresponding local peak plantar pressures. The metatarsal heads 1, 4, and 5 had a significantly different position than the local peak plantar pressures. The average difference in distance between the position of the metatarsal heads and the peak plantar pressure showed a significant correlation: on the medial side the head was located more distally to the local peak plantar pressure, on the lateral side more proximally. The findings suggest that normal plantar soft tissue is able to deflect a load. The observations might improve insight into the function of the normal forefoot and might direct further research on the pathological forefoot and on the design of footwear.


1996 ◽  
Vol 17 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Juan Carlos Garbalosa ◽  
Peter R. Cavanagh ◽  
Ge Wu ◽  
Jan S. Ulbrecht ◽  
Mary B. Becker ◽  
...  

The function of partially amputated feet in 10 patients with diabetes mellitus was studied. First-step bilateral barefoot plantar pressure distribution and three-dimensional kinematic data were collected using a Novel EMED platform and three video cameras. Analysis of the plantar pressure data revealed a significantly greater mean peak plantar pressure in the feet with transmetatarsal amputation (TMA) than in the intact feet of the same patients. The heels of the amputated feet had significantly lower mean peak plantar pressures than all the forefoot regions. A significantly greater maximum dynamic dorsiflexion range of motion was seen in the intact compared with the TMA feet. However, no difference was noted in the static dorsiflexion range of motion between the two feet and there was, therefore, a trend for the TMA feet to use less of the available range of motion. Given the altered kinematics and elevated plantar pressures noted in this study, careful postsurgical footwear management of feet with TMA would appear to be essential if ulceration is to be prevented.


2000 ◽  
Vol 16 (3) ◽  
pp. 320-326 ◽  
Author(s):  
Mikko Virmavirta ◽  
Paavo V. Komi

The Paromed Datalogger® with two insole pressure transducers (16 sensors each, 200 Hz) was applied to study the feasibility of the system for measurement of plantar pressure distribution in ski jumping. The specific aim was to test the sensitivity of the Paromed system to the changes in plantar pressure distribution in ski jumping. Three international level ski jumpers served as subjects during the testing of the system. The Datalogger was fixed to the jumpers’ lower back under the jumping suit. A separate pulse was transmitted to the Datalogger and tape recorder in order to synchronize the logger information with photocell signals indicating the location of the jumper on the inrun. Test procedure showed that this system could be used in ski jumping with only minor disturbance to the jumper. The measured relative pressure increase during the inrun curve matched well the calculated relative centrifugal force (mv2· r‒1), which thus serves a rough estimation of the system validity. Strong increase in pressure under the big toes compared to the heels (225% and 91%, respectively) with large interindividual differences characterized the take-off. These differences may reflect an unstable anteroposterior balance of a jumper while he tries to create a proper forward rotation for a good flight position.


2018 ◽  
Vol 108 (3) ◽  
pp. 225-230 ◽  
Author(s):  
Iona Borg ◽  
Stephen Mizzi ◽  
Cynthia Formosa

Background: Elevated dynamic plantar pressures are a consistent finding in diabetic patients with peripheral neuropathy, with implications for plantar foot ulceration. This study aimed to investigate whether a first-ray amputation affects plantar pressures and plantar pressure distribution patterns in individuals living with diabetes and peripheral neuropathy. Methods: A nonexperimental matched-subject design was conducted. Twenty patients living with diabetes and peripheral neuropathy were recruited. Group 1 (n = 10) had a first-ray amputation and group 2 (n = 10) had an intact foot with no history of ulceration. Plantar foot pressures and pressure-time integrals were measured under the second to fourth metatarsophalangeal joints, fifth metatarsophalangeal joint, and heel using a pressure platform. Results: Peak plantar pressures under the second to fourth metatarsophalangeal joints were significantly higher in participants with a first-ray amputation (P = .008). However, differences under the fifth metatarsophalangeal joint (P = .734) and heel (P = .273) were nonsignificant. Pressure-time integrals were significantly higher under the second to fourth metatarsophalangeal joints in participants with a first-ray amputation (P = .016) and in the heel in the control group (P = .046). Conclusions: Plantar pressures and pressure-time integrals seem to be significantly higher in patients with diabetic peripheral neuropathy and a first-ray amputation compared with those with diabetic neuropathy and an intact foot. Routine plantar pressure screening, orthotic prescription, and education should be recommended in patients with a first-ray amputation.


2004 ◽  
Vol 94 (3) ◽  
pp. 255-260 ◽  
Author(s):  
Simon J. Otter ◽  
Catherine Jane Bowen ◽  
Adam K. Young

We sought to investigate the magnitude and duration of peak forefoot plantar pressures in rheumatoid arthritis. The spatial and temporal characteristics of forefoot plantar pressures were measured in 25 patients with a positive diagnosis of rheumatoid arthritis of 5 to 10 years’ duration (mean, 8 years) and a comparison group using a platform-based pressure-measurement system. There were no significant differences between groups in the magnitude of peak plantar pressure in the forefoot region. Significant differences were, however, noted for temporal aspects of foot-pressure measurement. The duration of loading over sensors detecting peak plantar pressure was significantly longer in the rheumatoid arthritis group. In addition, the rheumatoid arthritis group demonstrated significantly greater force–time integrals. Significant increases in the temporal parameters of plantar pressure distribution, rather than those of amplitude, may be characteristic of the rheumatoid foot. (J Am Podiatr Med Assoc 94(3): 255–260, 2004)


1996 ◽  
Vol 17 (8) ◽  
pp. 470-472 ◽  
Author(s):  
Rob L. Martin ◽  
Stephen F. Conti

In a previous study, we examined plantar pressures under normally arched individuals in casts. The investigation described in this article was designed to assess plantar pressure distribution in subjects with Charcot midfoot collapse and rockerbottom deformity in standard short leg casts and total contact casts. Our results show that both types of casts significantly reduced midfoot pressures. No significant differences were noted between the two casting groups.


2008 ◽  
Vol 98 (6) ◽  
pp. 457-465 ◽  
Author(s):  
Julie L. Walters ◽  
Belinda S. Lange ◽  
Lucy S. Chipchase

Background: We investigated whether a low-Dye application of Scotchcast Soft Cast significantly altered plantar pressure distribution during gait in patients with a navicular drop greater than 10 mm. Methods: An experimental, same-subject, repeated-measures design was used. Thirty-two subjects aged 18 to 35 years were screened with the navicular drop test and were included if a navicular drop greater than 10 mm was established. The Emed-AT-2 platform system was used to measure the plantar pressure distribution under the right foot of each subject using the midgait method of data collection. Each subject performed six barefoot walks and six walks with Soft Cast applied to the right foot. Average peak and mean plantar pressure measurements were recorded for ten discrete areas (masks). The heel and midfoot were each divided into two masks, and the forefoot and toe regions were divided into three masks each. Paired t tests were used to detect differences in peak and mean plantar pressures for each mask. Results: Soft Cast significantly affected peak and mean plantar pressures in seven and nine of the ten masks, respectively. No significant change in peak or mean plantar pressure was found beneath the medial midfoot. Conclusion: Plantar pressure may represent dynamic foot and ankle joint motion. With further research, Soft Cast may provide an alternative to current management techniques in controlling foot pronation and reducing symptoms of lower-limb abnormalities. (J Am Podiatr Med Assoc 98(6): 457–465, 2008)


Sign in / Sign up

Export Citation Format

Share Document