TOWARD MULTISCALE MODELING OF WAVE PROPAGATION IN ARTERIES

2016 ◽  
Vol 16 (03) ◽  
pp. 1650027 ◽  
Author(s):  
RYAN RAUSTIN ◽  
HADI MOHAMMADI

In this study, we apply a novel numerical technique for modeling the propagation of mechanical wave in the human arteries using the multiscale method. We define a particle region characterized by molecular dynamics (MD) method which is surrounded by a continuous region characterized by a finite element (FE) method. The interface between the two models are defined so as to minimize spurious reflections at the interface. This is a preliminary work for the modeling of the mechanical stability of atherosclerosis plaques using multiscale method. The model offered has extensive application in cell mechanics.

2021 ◽  
Vol 118 (45) ◽  
pp. e2103979118
Author(s):  
Çağla Özsoy ◽  
Ali Özbek ◽  
Michael Reiss ◽  
Xosé Luís Deán-Ben ◽  
Daniel Razansky

Propagation of electromechanical waves in excitable heart muscles follows complex spatiotemporal patterns holding the key to understanding life-threatening arrhythmias and other cardiac conditions. Accurate volumetric mapping of cardiac wave propagation is currently hampered by fast heart motion, particularly in small model organisms. Here we demonstrate that ultrafast four-dimensional imaging of cardiac mechanical wave propagation in entire beating murine heart can be accomplished by sparse optoacoustic sensing with high contrast, ∼115-µm spatial and submillisecond temporal resolution. We extract accurate dispersion and phase velocity maps of the cardiac waves and reveal vortex-like patterns associated with mechanical phase singularities that occur during arrhythmic events induced via burst ventricular electric stimulation. The newly introduced cardiac mapping approach is a bold step toward deciphering the complex mechanisms underlying cardiac arrhythmias and enabling precise therapeutic interventions.


2009 ◽  
Vol 01 (03) ◽  
pp. 405-420 ◽  
Author(s):  
NI SHENG ◽  
SHAOFAN LI

In this paper, we introduce a multi-scale nonequilibrium molecular dynamics (MS-NEMD) model that is capable of simulating nano-scale thermal–mechanical interactions. Recent simulation results using the MS-NEMD model are presented. The MS-NEMD simulation generalises the nonequilibrium molecular dynamics (NEMD) simulation to the setting of concurrent multi-scale simulation. This multi-scale framework is based on a novel concept of multi-scale canonical ensemble. Under this concept, each coarse scale finite element (FE) node acts as a thermostat, while the atoms associated with each node are assumed to be in a local equilibrium state within one coarse scale time step. The coarse scale mean field is solved by the FE method based on a coarse-grained thermodynamics model; whereas in the fine scale the NEMD simulation is driven by the random force that is regulated by the inhomogeneous continuum filed through a distributed Nośe–Hoover thermostat network. It is shown that the fine scale distribution function is canonical in the sense that it obeys a drifted local Boltzmann distribution.


1981 ◽  
Vol 14 (1) ◽  
pp. 19-33 ◽  
Author(s):  
N. Güzelsu ◽  
S. Saha

2018 ◽  
Vol 20 (35) ◽  
pp. 22674-22680 ◽  
Author(s):  
Melissabye Gunnoo ◽  
Pierre-André Cazade ◽  
Adam Orlowski ◽  
Mateusz Chwastyk ◽  
Haipei Liu ◽  
...  

Cellulosome nanomachines utilise binding specificity and high mechanical stability in breaking down cellulose.


Sign in / Sign up

Export Citation Format

Share Document