scholarly journals EFFECTIVENESS OF VIBRATION (CYCLIC LOADING) IN ACCELERATING BONE REMODELING AND ORTHODONTIC TOOTH MOOVEMENT: A SHORT REVIEW

Author(s):  
YONGQING CAI

This paper assesses the effectiveness of vibration in accelerating bone remodeling and orthodontic tooth movement. Databases of PubMed, Web of Science, and ScienceDirect were searched from January 2017 to March 2019 for randomized or quasi-randomized controlled trials that evaluated the effectiveness of vibration in accelerating bone remodeling and orthodontic tooth movement. The inclusion criteria were as follows: (i) studies that assessed the efficacy of vibration (cyclic loading) in bone remodeling and orthodontic tooth movement and (ii) those that employed groupings (experimental vs. control/placebo groups) on the basis of the use of vibration (cyclic loading). Eight clinical trials were included in this short review. Five studies met the eligibility criteria for bone remodeling and orthodontic tooth movement. Four studies found that low-magnitude high-frequency vibration could accelerate bone remodeling. However, contradictory results were obtained with regard to the acceleration of orthodontic tooth movement by vibration in human participants. Low-magnitude high-frequency vibration can accelerate bone remodeling and orthodontic tooth movement. However, this acceleration is dependent on the magnitude and frequency. Further research is necessary to determine the most feasible protocols for investigating the effects of magnitude and frequency of vibration on the acceleration of orthodontic tooth movement in human participants.

2010 ◽  
Vol 29 (5) ◽  
pp. 746-752 ◽  
Author(s):  
Dick Ho-Kiu Chow ◽  
Kwok-Sui Leung ◽  
Ling Qin ◽  
Andraay Hon-Chi Leung ◽  
Wing-Hoi Cheung

2021 ◽  
pp. 002203452110199
Author(s):  
Y. Xie ◽  
Q. Tang ◽  
S. Yu ◽  
W. Zheng ◽  
G. Chen ◽  
...  

Orthodontic tooth movement (OTM) depends on periodontal ligament cells (PDLCs) sensing biomechanical stimuli and subsequently releasing signals to initiate alveolar bone remodeling. However, the mechanisms by which PDLCs sense biomechanical stimuli and affect osteoclastic activities are still unclear. This study demonstrates that the core circadian protein aryl hydrocarbon receptor nuclear translocator–like protein 1 (BMAL1) in PDLCs is highly involved in sensing and delivering biomechanical signals. Orthodontic force upregulates BMAL1 expression in periodontal tissues and cultured PDLCs in manners dependent on ERK (extracellular signal–regulated kinase) and AP1 (activator protein 1). Increased BMAL1 expression can enhance secretion of CCL2 (C-C motif chemokine 2) and RANKL (receptor activator of nuclear factor–κB ligand) in PDLCs, which subsequently promotes the recruitment of monocytes that differentiate into osteoclasts. The mechanistic delineation clarifies that AP1 induced by orthodontic force can directly interact with the BMAL1 promoter and activate gene transcription in PDLCs. Localized administration of the ERK phosphorylation inhibitor U0126 or the BMAL1 inhibitor GSK4112 suppressed ERK/AP1/BMAL1 signaling. These treatments dramatically reduced osteoclastic activity in the compression side of a rat orthodontic model, and the OTM rate was almost nonexistent. In summary, our results suggest that force-induced expression of BMAL1 in PDLCs is closely involved in controlling osteoclastic activities during OTM and plays a vital role in alveolar bone remodeling. It could be a useful therapeutic target for accelerating the OTM rate and controlling pathologic bone-remodeling activities.


1994 ◽  
Vol 266 (5) ◽  
pp. E731-E738 ◽  
Author(s):  
C. Dolce ◽  
J. Anguita ◽  
L. Brinkley ◽  
P. Karnam ◽  
M. Humphreys-Beher ◽  
...  

Effects on bone remodeling have been attributed to epidermal growth factor (EGF). Sialoadenectomy (SX) removes the major source of EGF in rodents and decreases both salivary and serum EGF levels. EGF effects on rat alveolar bone remodeling manifested by molar drift (MD) and orthodontic tooth movement (OTM) were examined using the following two approaches: 1) EGF depletion by SX and replacement by orally administered EGF (50 micrograms.animal-1.day-1); 2) sham rats supplemented with matching amounts of EGF. MD and OTM were measured using cephalometric radiographs; bone formation was measured histomorphometrically using tetracycline labeling. Normal MD was not detected after SX, and alveolar bone formation was significantly reduced both around the tooth and in nondental sites. Replacement EGF given to SX rats and supplemental EGF administered to sham rats changed the direction and enhanced the rate of MD. A mesially directed orthodontic force applied to the molars of SX animals increased bone formation on the distal aspect of the tooth roots. Supplemental EGF did not significantly affect OTM. EGF affects alveolar bone remodeling, as manifested clinically by alterations in normal maxillary MD.


2021 ◽  
Vol 51 (4) ◽  
pp. 282-292
Author(s):  
Sung-Hee Lee ◽  
Jung-Yul Cha ◽  
Sung-Hwan Choi ◽  
Baek-il Kim ◽  
Jae-Kook Cha ◽  
...  

2007 ◽  
Vol 77 (1) ◽  
pp. 135-141 ◽  
Author(s):  
Sila Mermut ◽  
Ali Osman Bengi ◽  
Erol Akin ◽  
Mehmet Kürkçü ◽  
Şeniz Karaçay

Abstract Objective: To determine the effects of interferon-gamma (IFN-γ) on bone remodeling during orthodontic tooth movement. Materials and Methods: Thirty adult male Sprague Dawley rats were randomly categorized into five groups. IFN-γ was administered in three different doses (0.01, 0.02, and 0.05 μg/20 μL) and the remaining two groups served as control. Mandibular first molars were moved mesially by means of Ni-Ti closed coil springs in all groups. The results were evaluated histomorphometrically, and parameters of trabecular bone volume (BV/TV), trabecular bone number (Tr.N), and trabecular separation (Tr.Sep) were observed at the interradicular bone area of the mandibular first molars. Results: Increases in BV/TV and Tr.N and decreases in Tr.Sep revealed the antiosteoclastic activity of IFN-γ. Conclusion: IFN-γ administration may be useful clinically for anchorage control.


Sign in / Sign up

Export Citation Format

Share Document