scholarly journals Effect of high-frequency vibration on orthodontic tooth movement and bone density

2019 ◽  
Vol 8 (1) ◽  
pp. 15 ◽  
Author(s):  
Tarek El-Bialy ◽  
Thomas Shipley ◽  
Khaled Farouk
Author(s):  
YONGQING CAI

This paper assesses the effectiveness of vibration in accelerating bone remodeling and orthodontic tooth movement. Databases of PubMed, Web of Science, and ScienceDirect were searched from January 2017 to March 2019 for randomized or quasi-randomized controlled trials that evaluated the effectiveness of vibration in accelerating bone remodeling and orthodontic tooth movement. The inclusion criteria were as follows: (i) studies that assessed the efficacy of vibration (cyclic loading) in bone remodeling and orthodontic tooth movement and (ii) those that employed groupings (experimental vs. control/placebo groups) on the basis of the use of vibration (cyclic loading). Eight clinical trials were included in this short review. Five studies met the eligibility criteria for bone remodeling and orthodontic tooth movement. Four studies found that low-magnitude high-frequency vibration could accelerate bone remodeling. However, contradictory results were obtained with regard to the acceleration of orthodontic tooth movement by vibration in human participants. Low-magnitude high-frequency vibration can accelerate bone remodeling and orthodontic tooth movement. However, this acceleration is dependent on the magnitude and frequency. Further research is necessary to determine the most feasible protocols for investigating the effects of magnitude and frequency of vibration on the acceleration of orthodontic tooth movement in human participants.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Michele Kaplan ◽  
Zana Kalajzic ◽  
Thomas Choi ◽  
Imad Maleeh ◽  
Christopher L. Ricupero ◽  
...  

Abstract Background Orthodontic tooth movement (OTM) has been shown to induce osteocyte apoptosis in alveolar bone shortly after force application. However, how osteocyte apoptosis affects orthodontic tooth movement is unknown. The goal of this study was to assess the effect of inhibition of osteocyte apoptosis on osteoclastogenesis, changes in the alveolar bone density, and the magnitude of OTM using a bisphosphonate analog (IG9402), a drug that affects osteocyte and osteoblast apoptosis but does not affect osteoclasts. Material and methods Two sets of experiments were performed. Experiment 1 was used to specifically evaluate the effect of IG9402 on osteocyte apoptosis in the alveolar bone during 24 h of OTM. For this experiment, twelve mice were divided into two groups: group 1, saline administration + OTM24-h (n=6), and group 2, IG9402 administration + OTM24-h (n=6). The contralateral unloaded sides served as the control. The goal of experiment 2 was to evaluate the role of osteocyte apoptosis on OTM magnitude and osteoclastogenesis 10 days after OTM. Twenty mice were divided into 4 groups: group 1, saline administration without OTM (n=5); group 2, IG9402 administration without OTM (n=5); group 3, saline + OTM10-day (n=6); and group 4, IG9402 + OTM10-day (n=4). For both experiments, tooth movement was achieved using Ultra Light (25g) Sentalloy Closed Coil Springs attached between the first maxillary molar and the central incisor. Linear measurements of tooth movement and alveolar bone density (BVF) were assessed by MicroCT analysis. Cell death (or apoptosis) was assessed by terminal dUTP nick-end labeling (TUNEL) assay, while osteoclast and macrophage formation were assessed by tartrate-resistant acid phosphatase (TRAP) staining and F4/80+ immunostaining. Results We found that IG9402 significantly blocked osteocyte apoptosis in alveolar bone (AB) at 24 h of OTM. At 10 days, IG9402 prevented OTM-induced loss of alveolar bone density and changed the morphology and quality of osteoclasts and macrophages, but did not significantly affect the amount of tooth movement. Conclusion Our study demonstrates that osteocyte apoptosis may play a significant role in osteoclast and macrophage formation during OTM, but does not seem to play a role in the magnitude of orthodontic tooth movement.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 796
Author(s):  
Christian Kirschneck ◽  
Nadine Straßmair ◽  
Fabian Cieplik ◽  
Eva Paddenberg ◽  
Jonathan Jantsch ◽  
...  

During orthodontic tooth movement, transcription factor hypoxia-inducible factor 1α (HIF1α) is stabilised in the periodontal ligament. While HIF1α in periodontal ligament fibroblasts can be stabilised by mechanical compression, in macrophages pressure application alone is not sufficient to stabilise HIF1α. The present study was conducted to investigate the role of myeloid HIF1α during orthodontic tooth movement. Orthodontic tooth movement was performed in wildtype and Hif1αΔmyel mice lacking HIF1α expression in myeloid cells. Subsequently, µCT images were obtained to determine periodontal bone loss, extent of orthodontic tooth movement and bone density. RNA was isolated from the periodontal ligament of the control side and the orthodontically treated side, and the expression of genes involved in bone remodelling was investigated. The extent of tooth movement was increased in Hif1αΔmyel mice. This may be due to the lower bone density of the Hif1αΔmyel mice. Deletion of myeloid Hif1α was associated with increased expression of Ctsk and Acp5, while both Rankl and its decoy receptor Opg were increased. HIF1α from myeloid cells thus appears to play a regulatory role in orthodontic tooth movement.


2021 ◽  
Vol 22 (2) ◽  
pp. 596
Author(s):  
Agnes Schröder ◽  
Joshua Gubernator ◽  
Alexandra Leikam ◽  
Ute Nazet ◽  
Fabian Cieplik ◽  
...  

Dietary salt uptake and inflammation promote sodium accumulation in tissues, thereby modulating cells like macrophages and fibroblasts. Previous studies showed salt effects on periodontal ligament fibroblasts and on bone metabolism by expression of nuclear factor of activated T-cells-5 (NFAT-5). Here, we investigated the impact of salt and NFAT-5 on osteoclast activity and orthodontic tooth movement (OTM). After treatment of osteoclasts without (NS) or with additional salt (HS), we analyzed gene expression and the release of tartrate-resistant acid phosphatase and calcium phosphate resorption. We kept wild-type mice and mice lacking NFAT-5 in myeloid cells either on a low, normal or high salt diet and inserted an elastic band between the first and second molar to induce OTM. We analyzed the expression of genes involved in bone metabolism, periodontal bone loss, OTM and bone density. Osteoclast activity was increased upon HS treatment. HS promoted periodontal bone loss and OTM and was associated with reduced bone density. Deletion of NFAT-5 led to increased osteoclast activity with NS, whereas we detected impaired OTM in mice. Dietary salt uptake seems to accelerate OTM and induce periodontal bone loss due to reduced bone density, which may be attributed to enhanced osteoclast activity. NFAT-5 influences this reaction to HS, as we detected impaired OTM and osteoclast activity upon deletion.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Teruko Takano-Yamamoto ◽  
Kiyo Sasaki ◽  
Goudarzi Fatemeh ◽  
Tomohiro Fukunaga ◽  
Masahiro Seiryu ◽  
...  

2011 ◽  
Vol 16 (3) ◽  
pp. 679-688 ◽  
Author(s):  
Hsing-Wen Chang ◽  
Heng-Li Huang ◽  
Jian-Hong Yu ◽  
Jui-Ting Hsu ◽  
Yu-Fen Li ◽  
...  

2018 ◽  
Vol 16 (1) ◽  
pp. 73-81 ◽  
Author(s):  
Mohammad Sadegh Ahmad Akhoundi ◽  
Sedigheh Sheikhzadeh ◽  
Amirhossein Mirhashemi ◽  
Elahe Ansari ◽  
Yasaman Kheirandish ◽  
...  

2015 ◽  
Vol 86 (4) ◽  
pp. 558-564 ◽  
Author(s):  
Chi-Yang Tsai ◽  
Teng-Kai Yang ◽  
Hsueh-Yin Hsieh ◽  
Liang-Yu Yang

ABSTRACT Objective:  To investigate the effects of flapless micro-osteoperforation and corticision on the rate of orthodontic tooth movement in rats. Materials and Methods:  Forty-five 8-week-old male Sprague-Dawley rats were divided into the following groups: micro-osteoperforation and orthodontic force (MOP + F), corticision and orthodontic force (C + F), and orthodontic force only (F, control). The left maxillary first molars were pulled forward with a force of 50 g. Flapless surgical interventions were conducted in the MOP + F and C + F groups. The total duration of the experiment was 6 weeks. Alveolar bone density and the number of osteoclasts were evaluated using microcomputed tomography and histologic examination, respectively. Results:  The tooth movement distance was significantly higher in both experimental groups than in the control group. Bone density and bone mineral density decreased in the MOP + F and C + F groups. The number of osteoclasts in the MOP + F and C + F groups was significantly higher than in the control group F. Conclusion:  The two minimally invasive flapless surgical interventions increased bone remodeling and osteoclast activity and induced faster orthodontic tooth movement for at least 2 weeks in rats. No differences were observed between the outcome of flapless micro-osteoperforation and corticision in the rats.


2016 ◽  
Vol 28 (4) ◽  
pp. 126-133
Author(s):  
Amir Hossein Mirhashemi ◽  
Mohammad Sadegh Ahmad Akhoundi ◽  
Elahe Ansari ◽  
Sedigheh Sheikhzadeh ◽  
Nafiseh Momeni ◽  
...  

Author(s):  
Tarek El-Bialy

This study presents a novel technique utilizing high frequency vibration to shorten treatment time and preserve alveolar bone in challenging orthodontic cases treated with Invisalign® clear aligners. Four non-growing orthodontic patients (age range 14-47 years old) with Class II skeletal patterns (convex profiles with retrognathic mandibles) who sought correction of their crowded teeth and non-surgical correction of their convex profiles were included in this study. These patients were treated using Invisalign clear aligners together with high frequency vibration (HFV) devices (120 Hz) (VPro5™) that were used by all patients for five minutes per day during active orthodontic treatment. Vertical control and forward rotation of the mandible for each patient was achieved through pre-programming the Invisalign to produce posterior teeth intrusion. Successful forward rotation of the mandibles achieved in all patients led to improvement of their facial convex profiles (ANB improved 2.1 + 0.5 degrees; FMA improved 1.2 +1.1 degrees). Dental decompensation was achieved by lingual tipping of the lower incisors and palatal root torque of upper incisors. The use of HFV together with Invisalign facilitated achieving these results within a 12+6 month period. In addition, more bone labial to the lower incisors after their lingual movement was noted. In conclusion, the use of HFV concurrent with SmartTrack Invisalign aligners allowed complex tooth movement and forward projection without surgery in non-growing patients with skeletal Class II relationships. The clinical impact and implications of this case series is that the use of HFV facilitates complex orthodontic tooth movement including posterior teeth intrusion and incisor decompensation in addition to increased bone formation labial to lower incisors that may minimize future gum recession due to their labial inclination.


Sign in / Sign up

Export Citation Format

Share Document