Subtle nonlinearity in popular album charts

1999 ◽  
Vol 02 (03) ◽  
pp. 197-208 ◽  
Author(s):  
R. Alexander Bentley ◽  
Herbert D. G. Maschner

Large-scale patterns of culture change may be explained by models of self organized criticality, or alternatively, by multiplicative processes. We speculate that popular album activity may be similar to critical models of extinction in that interconnected agents compete to survive within a limited space. Here we investigate whether popular music albums as listed on popular album charts display evidence of self-organized criticality, including a self-affine time series of activity and power-law distributions of lifetimes and exit activity in the chart. We find it difficult to distinguish between multiplicative growth and critical model hypotheses for these data. However, aspects of criticality may be masked by the selective sampling that a "Top 200" listing necessarily implies.

Author(s):  
M. E. J. Newman ◽  
R. G. Palmer

The models discussed in the last chapter are intriguing, but present a number of problems. In particular, most of the results about them come from computer simulations, and little is known analytically about their properties. Results such as the power-law distribution of extinction sizes and the system's evolution to the "edge of chaos" are only as accurate as the simulations in which they are observed. Moreover, it is not even clear what the mechanisms responsible for these results are, beyond the rather general arguments that we have already given. In order to address these shortcomings, Bak and Sneppen (1993; Sneppen et al. 1995; Sneppen 1995; Bak 1996) have taken Kauffman's ideas, with some modification, and used them to create a considerably simpler model of large-scale coevolution which also shows a power-law distribution of avalanche sizes and which is simple enough that its properties can, to some extent, be understood analytically. Although the model does not directly address the question of extinction, a number of authors have interpreted it, using arguments similar to those of section 1.2.2.5, as a possible model for extinction by biotic causes. The Bak-Sneppen model is one of a class of models that show "self-organized criticality," which means that regardless of the state in which they start, they always tune themselves to a critical point of the type discussed in section 2.4, where power-law behavior is seen. We describe self-organized criticality in more detail in section 3.2. First, however, we describe the Bak-Sneppen model itself. In the model of Bak and Sneppen there are no explicit fitness landscapes, as there are in NK models. Instead the model attempts to mimic the effects of landscapes in terms of "fitness barriers." Consider figure 3.1, which is a toy representation of a fitness landscape in which there is only one dimension in the genotype (or phenotype) space. If the mutation rate is low compared with the time scale on which selection takes place (as Kauffman assumed), then a population will spend most of its time localized around a peak in the landscape (labeled P in the figure).


2016 ◽  
Vol 30 (06) ◽  
pp. 1650017 ◽  
Author(s):  
Shunfei Luo ◽  
Hongyun Luo ◽  
Zhiyuan Han

A study on the acoustic emission (AE) characteristics during deformation of nacre material was performed. We found that intermittent AE events are generated during nacre deformation. These avalanches may be attributed to microfracture events of the aragonite (CaCO3) nano-asperities and bridges during tablet sliding. These events show several critical features, such as the power-law distributions of the avalanche sizes and interval. These results suggest that the underlying fracture dynamics during nacre deformation display a self-organized criticality (SOC). The results also imply that the disorder and long-range correlation between local microfracture events may play important roles in nacre deformation.


Fractals ◽  
2006 ◽  
Vol 14 (04) ◽  
pp. 289-293 ◽  
Author(s):  
A. SARKAR ◽  
P. BARAT

The time series data of the monthly rainfall records (for the time period 1871–2002) in All India and different regions of India are analyzed. It is found that the distributions of the rainfall intensity exhibit perfect power law behavior. The scaling analysis revealed two distinct scaling regions in the rainfall time series.


2019 ◽  
Vol 489 (2) ◽  
pp. 2685-2693
Author(s):  
Shenbang Yang ◽  
Dahai Yan ◽  
Benzhong Dai ◽  
Pengfei Zhang ◽  
Qianqian Zhu ◽  
...  

ABSTRACT The statistical properties of X-ray flares from two separate locations (nucleus and HST-1) in the M87 jet are investigated to reveal the physical origin of the flares. We analyse the archival Chandra data for M87, and identify 14 flares in the nucleus and nine flares in HST-1. The peak intensity (IP) and the flaring duration time (Tfl) for each flare are obtained. It is found that the distributions of both IP and Tfl for the nucleus obey a power law form with a similar index. A similar result is also obtained for HST-1, and no significant inconsistency between the nucleus and HST-1 is found for the indices. Similar to solar X-ray flares, the power-law distributions of the flare event parameters can be well explained by a self-organized criticality system, which are triggered by magnetic reconnection. Our results suggest that the flares from nucleus and HST-1 are possibly triggered by magnetic reconnection process. The consistent indices for the distributions of IP and Tfl in the nucleus and HST-1 indicate that the dimensions of the energy dissipation of the magnetic reconnection are identical in the two regions. A strong correlation between the flares in the two regions also suggests a similar physical origin for the flares.


Author(s):  
M. E. J. Newman ◽  
R. G. Palmer

Developed after a meeting at the Santa Fe Institute on extinction modeling, this book comments critically on the various modeling approaches. In the last decade or so, scientists have started to examine a new approach to the patterns of evolution and extinction in the fossil record. This approach may be called "statistical paleontology," since it looks at large-scale patterns in the record and attempts to understand and model their average statistical features, rather than their detailed structure. Examples of the patterns these studies examine are the distribution of the sizes of mass extinction events over time, the distribution of species lifetimes, or the apparent increase in the number of species alive over the last half a billion years. In attempting to model these patterns, researchers have drawn on ideas not only from paleontology, but from evolutionary biology, ecology, physics, and applied mathematics, including fitness landscapes, competitive exclusion, interaction matrices, and self-organized criticality. A self-contained review of work in this field.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Andrey Dmitriev ◽  
Victor Dmitriev ◽  
Stepan Balybin

Recently, there has been an increasing number of empirical evidence supporting the hypothesis that spread of avalanches of microposts on social networks, such as Twitter, is associated with some sociopolitical events. Typical examples of such events are political elections and protest movements. Inspired by this phenomenon, we built a phenomenological model that describes Twitter’s self-organization in a critical state. An external manifestation of this condition is the spread of avalanches of microposts on the network. The model is based on a fractional three-parameter self-organization scheme with stochastic sources. It is shown that the adiabatic mode of self-organization in a critical state is determined by the intensive coordinated action of a relatively small number of network users. To identify the critical states of the network and to verify the model, we have proposed a spectrum of three scaling indicators of the observed time series of microposts.


Sign in / Sign up

Export Citation Format

Share Document