adiabatic mode
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 2021 (07) ◽  
pp. 051
Author(s):  
Takahiro Tanaka ◽  
Yuko Urakawa
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Moein Shayegannia ◽  
Arthur O. Montazeri ◽  
Katelyn Dixon ◽  
Rajiv Prinja ◽  
Nastaran Kazemi-Zanjani ◽  
...  

AbstractWe delineate the four principal surface plasmon polariton coupling and interaction mechanisms in subwavelength gratings, and demonstrate their significant roles in shaping the optical response of plasmonic gratings. Within the framework of width-graded metal–insulator-metal nano-gratings, electromagnetic field confinement and wave guiding result in multiwavelength light localization provided conditions of adiabatic mode transformation are satisfied. The field is enhanced further through fine tuning of the groove-width (w), groove-depth (L) and groove-to-groove-separation (d). By juxtaposing the resonance modes of width-graded and non-graded gratings and defining the adiabaticity condition, we demonstrate the criticality of w and d in achieving adiabatic mode transformation among the grooves. We observe that the resonant wavelength of a graded grating corresponds to the properties of a single groove when the grooves are adiabatically coupled. We show that L plays an important function in defining the span of localized wavelengths. Specifically, we show that multiwavelength resonant modes with intensity enhancement exceeding three orders of magnitude are possible with w < 30 nm and 300 nm < d < 900 nm for a range of fixed values of L. This study presents a novel paradigm of deep-subwavelength adiabatically-coupled width-graded gratings—illustrating its versatility in design, hence its viability for applications ranging from surface enhanced Raman spectroscopy to multispectral imaging.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1133
Author(s):  
Sungjae Moon ◽  
Frank Rosenblum ◽  
Yuehua Tan ◽  
Kristian E. Waters ◽  
James A. Finch

Previous work has shown that sulphide self-heating occurs in three distinct stages, referred to as Stage A, Stage B and Stage C. In this publication, the focus is the transition from Stage A to Stage B which occurs at ca. 100 °C. Background literature hints that the transition corresponds to the transformation of the rhombic form of elemental sulphur to the more reactive monoclinic form that occurs at 96 °C. A test apparatus is modified for adiabatic heating to track the transition. The results support this transformation of sulphur as being key to the transition, and the transition temperature is thus modified to 96 °C. Variations in a sample’s response under adiabatic conditions are observed and possible reasons are discussed. Testing in adiabatic mode provides new insights into the sulphide self-heating process that complements the test designed to identify propensity to self-heat.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3828
Author(s):  
Boleslaw T. Karwowski

The dA::dGoxo pair appearing in nucleic ds-DNA can lead to a mutation in the genetic information. Depending on the dGoxo source, an AT→GC and GC→AC transversion might be observed. As a result, glycosylases are developed during the evolution, i.e., OGG1 and MutY. While the former effectively removes Goxo from the genome, the second one removes adenine from the dA::dGoxo and dA:dG pair. However, dA::dGoxo is recognized by MutY as ~6–10 times faster than dA:dG. In this article, the structural and electronic properties of simple nucleoside pairs dA:dG, dC:::dGoxo, dC:::dG, dA::dGoxo in the aqueous phase have been taken into theoretical consideration. The influence of solvent relaxation on the above is also discussed. It can be concluded that the dA::dGoxo nucleoside pair shows a lower ionization potential and higher electron affinity than the dA:dG pair in both a vertical and adiabatic mode. Therefore, it could be predicted, under electronic properties, that the electron ejected, for instance by a MutY 4[Fe-S]2+ cluster, is predisposed to trapping by the ds-DNA part containing the dA::dGoxo pair rather than by dA::dG.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Andrey Dmitriev ◽  
Victor Dmitriev ◽  
Stepan Balybin

Recently, there has been an increasing number of empirical evidence supporting the hypothesis that spread of avalanches of microposts on social networks, such as Twitter, is associated with some sociopolitical events. Typical examples of such events are political elections and protest movements. Inspired by this phenomenon, we built a phenomenological model that describes Twitter’s self-organization in a critical state. An external manifestation of this condition is the spread of avalanches of microposts on the network. The model is based on a fractional three-parameter self-organization scheme with stochastic sources. It is shown that the adiabatic mode of self-organization in a critical state is determined by the intensive coordinated action of a relatively small number of network users. To identify the critical states of the network and to verify the model, we have proposed a spectrum of three scaling indicators of the observed time series of microposts.


2019 ◽  
Vol 7 (4) ◽  
Author(s):  
Amel Durakovic ◽  
Paul Hunt ◽  
Subodh Patil ◽  
Subir Sarkar

Reconstructions of the primordial power spectrum (PPS) of curvature perturbations from cosmic microwave background anisotropies and large-scale structure data suggest that the usually assumed power-law PPS has localised features (up to \sim 10\%∼10% in amplitude), although of only marginal significance in the framework of \LambdaΛCDM cosmology. On the other hand if the cosmology is taken to be Einstein-de Sitter, larger features in the PPS (up to \sim 20\%∼20% in amplitude) are required to accurately fit the observed acoustic peaks. Within the context of single clock inflation, we show that any given reconstruction of the PPS can be mapped on to functional parameters of the underlying effective theory of the adiabatic mode within a 2nd-order formalism, provided the best fit fractional change of the PPS, \Delta{P}_{R}/{P}_{R}ΔPR/PR is such that (\Delta{P}_{R}/{P}_{R})^3(ΔPR/PR)3 falls within the 1\,\sigma1σ confidence interval of the reconstruction for features induced by variations of either the sound speed c_\mathrm{s}cs or the slow-roll parameter \epsilonϵ. Although there is a degeneracy amongst these functional parameters (and the models that project onto them), we can identify simple representative inflationary models that yield such features in the PPS. Thus we provide a dictionary (more accurately, a thesaurus) to go from observational data, via the reconstructed PPS, to models that reproduce them to per cent level precision.


Sign in / Sign up

Export Citation Format

Share Document