NONADDITIVE EFFECTS IN H2 AND HF TETRAMERS

2004 ◽  
Vol 03 (01) ◽  
pp. 15-22 ◽  
Author(s):  
JINSHAN LI ◽  
FUQIAN JING

Nonadditive three- and four-body interaction energies have been calculated for HF tetramer at the MP2/aug-cc-pVTZ level and for H 2 tetramer at the MP4(SDTQ)/aug-cc-pVTZ level using the so-called fifteen-point method. Calculated results show that with intermolecular distances decreasing from 3.0 to 1.7 Å the nonadditive three- and four-body interactions may be: (a) more and more attractive; (b) more and more repulsive; or (c) extremely weak. Strangely the minimum point of nonadditive three- and four-body interaction potentials has not been found up to now. For both H 2 and HF tetramers the nonadditive four-body interaction energy makes a negligible contribution to total binding energy when intermolecular distances are compressed from 3.0 to 1.7 Å.

1975 ◽  
Vol 69 ◽  
pp. 95-97
Author(s):  
R. H. Miller

Aarseth has shown by means of n-body calculations that, in star systems with a range of particle masses, the most massive stars quickly form a binary which soon takes up a large fraction of the total binding energy of the cluster. Similar effects appear in other kinds of physical systems as well; mesic atoms behave in much the same way. The phase volumes of two otherwise equivalent stellar systems, each dominated by a tightly bound binary, favor exchange to incorporate the more massive star in the binary by a factor equal to the cube of the ratio of masses.


1977 ◽  
Vol 278 (2) ◽  
pp. 319-332 ◽  
Author(s):  
G.M. Vagradov ◽  
F.A. Gareev ◽  
J. Bang

1975 ◽  
Vol 142 (2) ◽  
pp. 435-459 ◽  
Author(s):  
J Cisar ◽  
E A Kabat ◽  
M M Dorner ◽  
J Liao

Binding constants of the dextran-reactive BALB/c mouse IgA myeloma proteins W3129 and QUPC 52 have been determined for each member of the isomaltose series of oligosaccharides and for methyl alphaDglucoside. Protein W3129 has maximum complementarity for isomaltopentaose (IM5) deltaf degrees = 7,180 cal/mol) with 55-60% of the total binding energy directed against methylalphaDglucoside. Protein QUPC 52 gives maximum binding with isomaltohexaose (IM6) (deltaF degrees = -5,340 cal/mol) and has about 70% of its total binding energy for isomaltotriose (IM3), but at most only 5% for isomaltose (IM2) or methyl alphaDglucoside. Protein W3129 precipitates with branched dextrans high in alpha (1 yields 6) linkages and reacts with but does not precipitate a synthetic alpha (1 yields 6)-linked linear dextran. Protein QUPC 52 precipitates both branched and linear dextrans. Thus, the immunodominant group for protein W3129 is mimicked by methyl alphaDglucoside and this protein reacts exclusively at the terminal nonreducing ends of alpha (1 yields 6)-linked dextran chains. Protein QUPC 52 has an immunodominant group which is expressed by IM3 but not smaller oligosaccharides and this protein can react at nonterminal locations along alpha (1 yields 6)-linked dextran chains.Precipitation of linear dextran seems to be a valid although not quantitative assay for antidextrans with nonterminal specificity. Quantitative precipitin reactions with branched and linear dextrans suggest that alpha (1 yields 6)-specific human antidextrans are mixtures of molecules having terminal and nonterminal specificities and that the fraction of each type can vary among individuals. Rabbit antisera against IM3 or IM6 coupled to bovine serum albumin also appear to contain antibodies with nonterminal specificity for dextran chains although a large fraction has terminal specificity. Low molecular weight clinical dextran N-150N (congruent to 60,000) reacted more like linear dextran than like its parent native-branched dextran B512. This is thought to result from an abundance of nonterminal determinants in clinical dextran N-150N but a very small number of functional terminal determinants per molecule. An appreciation of terminal and nonterminal specificities and of the different immunodominant structures in isomaltosyl chains has proven to be of a great value in understanding the immunochemical reactions of dextrans. Moreover, certain previous findings with fructosan-reactive mouse myeloma proteins and human antilevans (55, 84) also suggest terminal and nonterminal specificities for levan chains.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1310
Author(s):  
Ziyad Tariq Muhseen ◽  
Salim Kadhim ◽  
Yahiya Ibrahim Yahiya ◽  
Eid A. Alatawi ◽  
Faris F. Aba Alkhayl ◽  
...  

Recently, a new variant, B.1620, with mutations (S477N-E484K) in the spike protein’s receptor-binding domain (RBD) has been reported in Europe. In order to design therapeutic strategies suitable for B.1.620, further studies are required. A detailed investigation of the structural features and variations caused by these substitutions, that is, a molecular level investigation, is essential to uncover the role of these changes. To determine whether and how the binding affinity of ACE2–RBD is affected, we used protein–protein docking and all-atom simulation approaches. Our analysis revealed that B.1.620 binds more strongly than the wild type and alters the hydrogen bonding network. The docking score for the wild type was reported to be −122.6 +/− 0.7 kcal/mol, while for B.1.620, the docking score was −124.9 +/− 3.8 kcal/mol. A comparative binding investigation showed that the wild-type complex has 11 hydrogen bonds and one salt bridge, while the B.1.620 complex has 14 hydrogen bonds and one salt bridge, among which most of the interactions are preserved between the wild type and B.1.620. A dynamic analysis of the two complexes revealed stable dynamics, which corroborated the global stability trend, compactness, and flexibility of the three essential loops, providing a better conformational optimization opportunity and binding. Furthermore, binding free energy revealed that the wild type had a total binding energy of −51.14 kcal/mol, while for B.1.628, the total binding energy was −68.25 kcal/mol. The current findings based on protein complex modeling and bio-simulation methods revealed the atomic features of the B.1.620 variant harboring S477N and E484K mutations in the RBD and the basis for infectivity. In conclusion, the current study presents distinguishing features of B.1.620, which can be used to design structure-based drugs against the B.1.620 variant.


2010 ◽  
Vol 25 (21n23) ◽  
pp. 1771-1774 ◽  
Author(s):  
J. MARGUERON ◽  
S. GORIELY ◽  
M. GRASSO ◽  
G. COLÒ ◽  
H. SAGAWA

Most of the Skyrme interactions are known to predict spin or isospin instabilities beyond the saturation density of nuclear matter which contradict predictions based on realistic interactions. A modification of the standard Skyrme interaction is proposed so that the ferromagnetic instability is removed. The new terms are density dependent and modify only the spin p - h interaction in the case of spin-saturated system. We have shown that these new terms change the total binding energy of odd-nuclei by only few tenths of keV. From the analysis of the spin instabilities of nuclear matter, restrictions on the parameters governing the spin-density dependent terms are evaluated. We conclude that with the extended Skyrme interaction, the Landau parameters G0 and [Formula: see text] could be tuned with a large flexibility without changing the ground-state properties in nuclei and in nuclear matter.


1977 ◽  
Vol 281 (2) ◽  
pp. 213-220 ◽  
Author(s):  
K. Aleklett ◽  
E. Lund ◽  
G. Rusdstam

Sign in / Sign up

Export Citation Format

Share Document