ARBITRARY ℓ-STATE SOLUTION OF THE HELLMANN POTENTIAL

2007 ◽  
Vol 06 (04) ◽  
pp. 893-903 ◽  
Author(s):  
G. KOCAK ◽  
O. BAYRAK ◽  
I. BOZTOSUN

We present an alternative and accurate solution of the radial Schrödinger equation for the Hellmann potential within the framework of the asymptotic iteration method. We show that the bound state energy eigenvalues can be obtained easily for any n and ℓ values without using any approximations required by other methods. Our results are compared with the findings of other methods.

2007 ◽  
Vol 18 (09) ◽  
pp. 1443-1451 ◽  
Author(s):  
O. BAYRAK ◽  
I. BOZTOSUN

In this paper, we show an alternative and accurate solution of the radial Schrödinger equation for the exponential cosine screened Coulomb potential within the framework of the asymptotic iteration method. Unlike other methods, which require approximations for the centrifugal or exponential terms, we show that it is possible to solve the full potential without making any approximations within the framework of this method. The bound state energy eigenvalues are obtained for any n and l values and the results are compared with the findings of different methods for several screening parameters. Moreover, we study the screening parameter δ = 0 case to obtain the energy eigenvalues and corresponding eigenfunctions of this potential in a closed-form.


2006 ◽  
Vol 15 (06) ◽  
pp. 1253-1262 ◽  
Author(s):  
M. KARAKOC ◽  
I. BOZTOSUN

We apply the asymptotic iteration method to solve the radial Schrödinger equation for the Yukawa type potentials. The solution of the radial Schrödinger equation by using different approaches requires tedious and cumbersome calculations; however, we present that it is possible to obtain the bound state energy eigenvalues for any n and ℓ values easily within the framework of this method. We also show the perturbed application of this method for the same potential. Our results are in excellent agreement with the findings of the SUSY perturbation, 1/N expansion and numerical methods.


Open Physics ◽  
2012 ◽  
Vol 10 (4) ◽  
Author(s):  
Asim Soylu ◽  
Orhan Bayrak ◽  
Ismail Boztosun

AbstractWe investigate the effect of the isotropic velocity-dependent potentials on the bound state energy eigenvalues of the Morse potential for any quantum states. When the velocity-dependent term is used as a constant parameter, ρ(r) = ρ 0, the energy eigenvalues can be obtained analytically by using the Pekeris approximation. When the velocity-dependent term is considered as an harmonic oscillator type, ρ(r) = ρ 0 r 2, we show how to obtain the energy eigenvalues of the Morse potential without any approximation for any n and ℓ quantum states by using numerical calculations. The calculations have been performed for different energy eigenvalues and different numerical values of ρ 0, in order to show the contribution of the velocity-dependent potential on the energy eigenvalues of the Morse potential.


2008 ◽  
Vol 17 (07) ◽  
pp. 1327-1334 ◽  
Author(s):  
RAMAZÀN SEVER ◽  
CEVDET TEZCAN

Exact solutions of Schrödinger equation are obtained for the modified Kratzer and the corrected Morse potentials with the position-dependent effective mass. The bound state energy eigenvalues and the corresponding eigenfunctions are calculated for any angular momentum for target potentials. Various forms of point canonical transformations are applied.


2021 ◽  
pp. 2150041
Author(s):  
U. S. Okorie ◽  
A. N. Ikot ◽  
G. J. Rampho ◽  
P. O. Amadi ◽  
Hewa Y. Abdullah

By employing the concept of conformable fractional Nikiforov–Uvarov (NU) method, we solved the fractional Schrödinger equation with the Morse potential in one dimension. The analytical expressions of the bound state energy eigenvalues and eigenfunctions for the Morse potential were obtained. Numerical results for the energies of Morse potential for the selected diatomic molecules were computed for different fractional parameters chosen arbitrarily. Also, the graphical variation of the bound state energy eigenvalues of the Morse potential for hydrogen dimer with vibrational quantum number and the range of the potential were discussed, with regards to the selected fractional parameters. The vibrational partition function and other thermodynamic properties such as vibrational internal energy, vibrational free energy, vibrational entropy and vibrational specific heat capacity were evaluated in terms of temperature. Our results are new and have not been reported in any literature before.


2017 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Ihtiari Prasetyaningrum ◽  
C Cari ◽  
A Suparmi

<p class="Abstract">The energy eigenvalues and eigenfunctions of Dirac equation for Rosen Morse plus Rosen Morse potential are investigated numerically in terms of finite Romanovsky Polynomial. The bound state energy eigenvalues are given in a closed form and corresponding eigenfunctions are obtained in terms of Romanovski polynomials. The energi eigen value is solved by numerical method with Matlab 2011.</p>


2021 ◽  
Vol 5 (2) ◽  
pp. 255-263
Author(s):  
Bako M. Bitrus ◽  
U Wadata ◽  
C. M. Nwabueze ◽  
E. S. Eyube

In this paper, concept of supersymmetric quantum mechanics has been employed to derive expression for bound state energy eigenvalues of the Tietz-Hulthén potential, the corresponding equation for normalized radial eigenfunctions were deduced by ansatz solution technique. In dealing with the centrifugal term of the effective potential of the Schrödinger equation, a Pekeris-like approximation recipe is considered. By means of the expression for bound state energy eigenvalues and radial eigenfunctions, equations for expectation values of inverse separation-squared and kinetic energy of the Tietz-Hulthén potential were obtained from the Hellmann-Feynman theorem. Numerical values of bound state energy eigenvalues and expectation values of inverse separation-squared and kinetic energy the Tietz-Hulthén potential were computed at arbitrary principal and angular momentum quantum numbers. Results obtained for computed energy eigenvalues of Tietz-Hulthén potential corresponding to Z = 0 and V0 = 0 are in excellent agreement with available literature data for Tietz and Hulthén potentials respectively. Studies have also revealed that increase in parameter Z results in monotonic increase in the mean kinetic energy of the system. The results obtained in this work may find suitable applications in areas of physics such as: atomic physics, chemical physics, nuclear physics and solid state physics


2017 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Ihtiari Prasetyaningrum ◽  
C Cari ◽  
A Suparmi

<p class="Abstract">The energy eigenvalues and eigenfunctions of Dirac equation for Rosen Morse plus Rosen Morse potential are investigated numerically in terms of finite Romanovsky Polynomial. The bound state energy eigenvalues are given in a closed form and corresponding eigenfunctions are obtained in terms of Romanovski polynomials. The energi eigen value is solved by numerical method with Matlab 2011.</p>


Sign in / Sign up

Export Citation Format

Share Document