Theoretical evaluation of corrosion inhibition performance of six thiadiazole derivatives

2020 ◽  
Vol 19 (02) ◽  
pp. 2050010
Author(s):  
Hongfu Mi ◽  
Wenhe Wang ◽  
Yaling Liu ◽  
Taiyang Wang

Corrosion inhibition mechanism of six 2-amino-5-alkyl-1,3,4-thiadiazole compounds, for metal surface corrosion was studied by combining quantum chemistry, molecular mechanics and molecular dynamics simulation methods. Molecular reactivity parameters such as [Formula: see text], [Formula: see text], Fukui index were obtained and revealed that the change in alkyl chain length has little influence on the reactivity of thiadiazole inhibitor molecules. Molecular mechanics calculation results show that the molecule with elongated alkyl chain could form self-assembled membrane with higher stability and coverage rate to prevent the diffusion of corrosive substances to metal surface. Molecular dynamics simulation revealed the -equilibrium adsorption behavior of these thiadiazole molecules on metal surface and the calculated results were in agreement with the experimentally determined inhibition efficiencies.

2014 ◽  
Vol 83 (6) ◽  
pp. 721-730 ◽  
Author(s):  
Linkai Mou ◽  
Molin Li ◽  
Shao-Yong Lu ◽  
Shuai Li ◽  
Qiancheng Shen ◽  
...  

2019 ◽  
Vol 19 (2) ◽  
pp. 461
Author(s):  
Herlina Rasyid ◽  
Bambang Purwono ◽  
Thomas S Hofer ◽  
Harno Dwi Pranowo

Lung cancer was a second common cancer case due to the high cigarette smoking activity both in men and women. One of protein receptor which plays an important role in the growth of the tumor is Epidermal Growth Factor Receptor (EGFR). EGFR protein is the most frequent protein mutation in cancer and promising target to inhibit the cancer growth. In this work, the stability of the hydrogen bond as the main interaction in the inhibition mechanism of cancer will be evaluated using molecular dynamics simulation. There were two compounds (A1 and A2) as new potential inhibitors that were complexed against the EGFR protein. The dynamic properties of each complexed were compared with respect to erlotinib against EGFR. The result revealed that both compounds had an interaction in the main catalytic area of protein receptor which is at methionine residue. Inhibitor A1 showed additional interactions during simulation time but the interactions tend to be weak. Inhibitor A2 displayed a more stable interaction. Following dynamics simulation, binding free energy calculation was performed by two scoring techniques MM/GB(PB)SA method and gave a good correlation with the stability of the complex. Furthermore, potential inhibitor A2 had a lower binding free energy as a direct consequence of the stability of hydrogen bond interaction.


Sign in / Sign up

Export Citation Format

Share Document