ITERATIVE REGULARIZATION AND NONLINEAR INVERSE SCALE SPACE BASED ON TRANSLATION INVARIANT WAVELET SHRINKAGE

Author(s):  
MIN LI ◽  
BINBIN HAO ◽  
XIANGCHU FENG

In this paper, we present a new class of iterative regularization methods in the setting of Besov spaces, which can be seen as generalizations of J. Xu's method. By incorporating translation invariant wavelet transform, minimizers of the new methods can be understood as the alternative to translation invariant wavelet shrinkage with weight that is dependent on the wavelet decomposition scale and the Besov smooth order. And we generalize the iterative regularization methods to a new class of nonlinear inverse scale spaces with scale and Besov smooth order dependent weight. The numerical results show an excellent denoising effect and improvement over J. Xu's method.

2010 ◽  
Vol 90 (8) ◽  
pp. 1215-1225
Author(s):  
Xiangchu Feng ◽  
Guojun Liu ◽  
Weiwei Wang

1982 ◽  
Vol 14 (4-5) ◽  
pp. 59-71 ◽  
Author(s):  
L H Keith ◽  
R C Hall ◽  
R C Hanisch ◽  
R G Landolt ◽  
J E Henderson

Two new methods have been developed to analyze for organic pollutants in water. The first, two-dimensional gas chromatography, using post detector peak recycling (PDPR), involves the use of a computer-controlled gas Chromatograph to selectively trap compounds of interest and rechromatograph them on a second column, recycling them through the same detector again. The second employs a new detector system, a thermally modulated electron capture detector (TMECD). Both methods were used to demonstrate their utility by applying them to the analysis of a new class of potentially ubiquitous anthropoaqueous pollutants in drinking waters- -haloacetonitriles. These newly identified compounds are produced from certain amino acids and other nitrogen-containing compounds reacting with chlorine during the disinfection stage of treatment.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 174
Author(s):  
Janez Urevc ◽  
Miroslav Halilovič

In this paper, a new class of Runge–Kutta-type collocation methods for the numerical integration of ordinary differential equations (ODEs) is presented. Its derivation is based on the integral form of the differential equation. The approach enables enhancing the accuracy of the established collocation Runge–Kutta methods while retaining the same number of stages. We demonstrate that, with the proposed approach, the Gauss–Legendre and Lobatto IIIA methods can be derived and that their accuracy can be improved for the same number of method coefficients. We expressed the methods in the form of tables similar to Butcher tableaus. The performance of the new methods is investigated on some well-known stiff, oscillatory, and nonlinear ODEs from the literature.


Robotica ◽  
2008 ◽  
Vol 26 (5) ◽  
pp. 619-625 ◽  
Author(s):  
K. Y. Tsai ◽  
T. K. Lee ◽  
Y. S. Jang

SUMMARYDeveloping 6-DOF isotropic manipulators using isotropic generators is simple and efficient, and isotropic generators can be employed to develop serial, redundant, or parallel isotropic manipulators. An isotropic generator consists of a reference point and six straight lines. The existing generators, however, have one common geometric constraint: the reference point is equidistant from the six straight lines. Some practical isotropic designs might not be obtained due to this constraint. This paper proposes methods for developing new isotropic generators. The generators thus developed are not subject to the constraint, and the new methods allow us to specify the location of the tool center point, the size of the platform or the base, or the shape of isotropic parallel manipulators. Many new generators are presented to develop 6-DOF parallel manipulators with different shapes or different types of kinematic chains.


Sign in / Sign up

Export Citation Format

Share Document