A graph-based active learning method for classification of remote sensing images
Remote sensing (RS) technology provides essential data for monitoring the Earth. To fully utilize the data, image classification is often needed to convert data to information. The success of image classification methods greatly depends on the quality and quantity of training samples. To effectively select more informative training samples, this paper proposes a new active learning (AL) technique for classification of remote sensing (RS) images based on graph theory. A new diversity criterion is proposed based on geometrical features of the support vector machines (SVM) outputs. The diversity selection procedure is converted to the densest k-subgraph [Formula: see text] maximization problem in graph theory. The [Formula: see text] maximization problem is solved by a greedy algorithm. The proposed technique is compared with competing methods adopted in RS community. Experimental tests are performed on very high resolution (VHR) multispectral and hyperspectral images. Experimental results demonstrate that the proposed technique leads to comparable or even better classification accuracies with respect to competing methods on the two datasets.