A graph-based active learning method for classification of remote sensing images

Author(s):  
Lian-Zhi Huo ◽  
Ping Tang

Remote sensing (RS) technology provides essential data for monitoring the Earth. To fully utilize the data, image classification is often needed to convert data to information. The success of image classification methods greatly depends on the quality and quantity of training samples. To effectively select more informative training samples, this paper proposes a new active learning (AL) technique for classification of remote sensing (RS) images based on graph theory. A new diversity criterion is proposed based on geometrical features of the support vector machines (SVM) outputs. The diversity selection procedure is converted to the densest k-subgraph [Formula: see text] maximization problem in graph theory. The [Formula: see text] maximization problem is solved by a greedy algorithm. The proposed technique is compared with competing methods adopted in RS community. Experimental tests are performed on very high resolution (VHR) multispectral and hyperspectral images. Experimental results demonstrate that the proposed technique leads to comparable or even better classification accuracies with respect to competing methods on the two datasets.

2019 ◽  
Vol 11 (16) ◽  
pp. 1927 ◽  
Author(s):  
Xiaoxue Wang ◽  
Xiangwei Gao ◽  
Yuanzhi Zhang ◽  
Xianyun Fei ◽  
Zhou Chen ◽  
...  

Wetlands are one of the world’s most important ecosystems, playing an important role in regulating climate and protecting the environment. However, human activities have changed the land cover of wetlands, leading to direct destruction of the environment. If wetlands are to be protected, their land cover must be classified and changes to it monitored using remote sensing technology. The random forest (RF) machine learning algorithm, which offers clear advantages (e.g., processing feature data without feature selection and preferable classification result) for high spatial image classification, has been used in many study areas. In this research, to verify the effectiveness of this algorithm for remote sensing image classification of coastal wetlands, two types of spatial resolution images of the Linhong Estuary wetland in Lianyungang—Worldview-2 and Landsat-8 images—were used for land cover classification using the RF method. To demonstrate the preferable classification accuracy of the RF algorithm, the support vector machine (SVM) and k-nearest neighbor (k-NN) methods were also used to classify the same area of land cover for comparison with the results of RF classification. The study results showed that (1) the overall accuracy of the RF method reached 91.86%, higher than the SVM and k-NN methods by 4.68% and 4.72%, respectively, for Worldview-2 images; (2) at the same time, the classification accuracies of RF, SVM, and k-NN were 86.61%, 79.96%, and 77.23%, respectively, for Landsat-8 images; (3) for some land cover types having only a small number of samples, the RF algorithm also achieved better classification results using Worldview-2 and Landsat-8 images, and (4) the addition texture features could improve the classification accuracy of the RF method when using Worldview-2 images. Research indicated that high-resolution remote sensing images are more suitable for small-scale land cover classification image and that the RF algorithm can provide better classification accuracy and is more suitable for coastal wetland classification than the SVM and k-NN algorithms are.


2020 ◽  
Vol 13 (1) ◽  
pp. 65
Author(s):  
Jingtao Li ◽  
Yonglin Shen ◽  
Chao Yang

Due to the increasing demand for the monitoring of crop conditions and food production, it is a challenging and meaningful task to identify crops from remote sensing images. The state-of the-art crop classification models are mostly built on supervised classification models such as support vector machines (SVM), convolutional neural networks (CNN), and long- and short-term memory neural networks (LSTM). Meanwhile, as an unsupervised generative model, the adversarial generative network (GAN) is rarely used to complete classification tasks for agricultural applications. In this work, we propose a new method that combines GAN, CNN, and LSTM models to classify crops of corn and soybeans from remote sensing time-series images, in which GAN’s discriminator was used as the final classifier. The method is feasible on the condition that the training samples are small, and it fully takes advantage of spectral, spatial, and phenology features of crops from satellite data. The classification experiments were conducted on crops of corn, soybeans, and others. To verify the effectiveness of the proposed method, comparisons with models of SVM, SegNet, CNN, LSTM, and different combinations were also conducted. The results show that our method achieved the best classification results, with the Kappa coefficient of 0.7933 and overall accuracy of 0.86. Experiments in other study areas also demonstrate the extensibility of the proposed method.


2021 ◽  
Author(s):  
Ahmet Batuhan Polat ◽  
Ozgun Akcay ◽  
Fusun Balik Sanli

<p>Obtaining high accuracy in land cover classification is a non-trivial problem in geosciences for monitoring urban and rural areas. In this study, different classification algorithms were tested with different types of data, and besides the effects of seasonal changes on these classification algorithms and the evaluation of the data used are investigated. In addition, the effect of increasing classification training samples on classification accuracy has been revealed as a result of the study. Sentinel-1 Synthetic Aperture Radar (SAR) images and Sentinel-2 multispectral optical images were used as datasets. Object-based approach was used for the classification of various fused image combinations. The classification algorithms Support Vector Machines (SVM), Random Forest (RF) and K-Nearest Neighborhood (kNN) methods were used for this process. In addition, Normalized Difference Vegetation Index (NDVI) was examined separately to define the exact contribution to the classification accuracy.  As a result, the overall accuracies were compared by classifying the fused data generated by combining optical and SAR images. It has been determined that the increase in the number of training samples improve the classification accuracy. Moreover, it was determined that the object-based classification obtained from single SAR imagery produced the lowest classification accuracy among the used different dataset combinations in this study. In addition, it has been shown that NDVI data does not increase the accuracy of the classification in the winter season as the trees shed their leaves due to climate conditions.</p>


Author(s):  
S. Mirzaee ◽  
M. Motagh ◽  
H. Arefi ◽  
M. Nooryazdan

Due to its special imaging characteristics, Synthetic Aperture Radar (SAR) has become an important source of information for a variety of remote sensing applications dealing with environmental changes. SAR images contain information about both phase and intensity in different polarization modes, making them sensitive to geometrical structure and physical properties of the targets such as dielectric and plant water content. In this study we investigate multi temporal changes occurring to different crop types due to phenological changes using high-resolution TerraSAR-X imagers. The dataset includes 17 dual-polarimetry TSX data acquired from June 2012 to August 2013 in Lorestan province, Iran. Several features are extracted from polarized data and classified using support vector machine (SVM) classifier. Training samples and different features employed in classification are also assessed in the study. Results show a satisfactory accuracy for classification which is about 0.91 in kappa coefficient.


2021 ◽  
Author(s):  
Mohammad Hassan Almaspoor ◽  
Ali Safaei ◽  
Afshin Salajegheh ◽  
Behrouz Minaei-Bidgoli

Abstract Classification is one of the most important and widely used issues in machine learning, the purpose of which is to create a rule for grouping data to sets of pre-existing categories is based on a set of training sets. Employed successfully in many scientific and engineering areas, the Support Vector Machine (SVM) is among the most promising methods of classification in machine learning. With the advent of big data, many of the machine learning methods have been challenged by big data characteristics. The standard SVM has been proposed for batch learning in which all data are available at the same time. The SVM has a high time complexity, i.e., increasing the number of training samples will intensify the need for computational resources and memory. Hence, many attempts have been made at SVM compatibility with online learning conditions and use of large-scale data. This paper focuses on the analysis, identification, and classification of existing methods for SVM compatibility with online conditions and large-scale data. These methods might be employed to classify big data and propose research areas for future studies. Considering its advantages, the SVM can be among the first options for compatibility with big data and classification of big data. For this purpose, appropriate techniques should be developed for data preprocessing in order to covert data into an appropriate form for learning. The existing frameworks should also be employed for parallel and distributed processes so that SVMs can be made scalable and properly online to be able to handle big data.


Author(s):  
Yuhang Zhang ◽  
Hsiuhan Lexie Yang ◽  
Saurabh Prasad ◽  
Edoardo Pasolli ◽  
Jinha Jung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document