Glycine-induced formation and druggability score prediction of protein surface pockets

2019 ◽  
Vol 17 (05) ◽  
pp. 1950026
Author(s):  
Pietro Bongini ◽  
Neri Niccolai ◽  
Monica Bianchini

Nowadays, it is well established that most of the human diseases which are not related to pathogen infections have their origin from DNA disorders. Thus, DNA mutations, waiting for the availability of CRISPR-like remedies, will propagate into proteomics, offering the possibility to select natural or synthetic molecules to fight against the effects of malfunctioning proteins. Drug discovery, indeed, is a flourishing field of biotechnological research to improve human health, even though the development of a new drug is increasingly more expensive in spite of the massive use of informatics in Medicinal Chemistry. CRISPR technology adds new alternatives to cure diseases by removing DNA defects responsible of genome-related pathologies. In principle, the same technology, however, could also be exploited to induce protein mutations whose effects are controlled by the presence of suitable ligands. In this paper, a new idea is proposed for the realization of mutated proteins, on the surface of which more spacious transient pockets are formed and, therefore, are more suitable for hosting drugs. In particular, new allosteric sites are obtained by replacing amino-acids with bulky side chains with glycine, Gly, the smallest natural amino-acid. We also present a machine learning approach to evaluate the druggability score of new (or enlarged) pockets. Preliminary experimental results are very promising, showing that 10% of the sites created by the Gly-pipe software are druggable.

2021 ◽  
Author(s):  
george chang ◽  
Nathaniel Woody ◽  
Christopher Keefer

Lipophilicity is a fundamental structural property that influences almost every aspect of drug discovery. Within Pfizer, we have two complementary high-throughput screens for measuring lipophilicity as a distribution coefficient (LogD) – a miniaturized shake-flask method (SFLogD) and a chromatographic method (ELogD). The results from these two assays are not the same (see Figure 1), with each assay being applicable or more reliable in particular chemical spaces. In addition to LogD assays, the ability to predict the LogD value for virtual compounds is equally vital. Here we present an in-silico LogD model, applicable to all chemical spaces, based on the integration of the LogD data from both assays. We developed two approaches towards a single LogD model – a Rule-based and a Machine Learning approach. Ultimately, the Machine Learning LogD model was found to be superior to both internally developed and commercial LogD models.<br>


2021 ◽  
Author(s):  
george chang ◽  
Nathaniel Woody ◽  
Christopher Keefer

Lipophilicity is a fundamental structural property that influences almost every aspect of drug discovery. Within Pfizer, we have two complementary high-throughput screens for measuring lipophilicity as a distribution coefficient (LogD) – a miniaturized shake-flask method (SFLogD) and a chromatographic method (ELogD). The results from these two assays are not the same (see Figure 1), with each assay being applicable or more reliable in particular chemical spaces. In addition to LogD assays, the ability to predict the LogD value for virtual compounds is equally vital. Here we present an in-silico LogD model, applicable to all chemical spaces, based on the integration of the LogD data from both assays. We developed two approaches towards a single LogD model – a Rule-based and a Machine Learning approach. Ultimately, the Machine Learning LogD model was found to be superior to both internally developed and commercial LogD models.<br>


2021 ◽  
Author(s):  
Robert I. Horne ◽  
Andrea Possenti ◽  
Sean Chia ◽  
Z. Faidon Brotzakis ◽  
Roxine Staats ◽  
...  

Drug development is an increasingly active area of machine learning application, due to the high attrition rates of conventional drug discovery pipelines. This issue is especially pressing for neurodegenerative diseases where very few disease modifying drugs have been approved, demonstrating a need for novel and efficient approaches to drug discovery in this area. However, whether or not machine learning methods can fulfil this role remains to be demonstrated. To explore this possibility, we describe a machine learning approach to identify specific inhibitors of the proliferation of alpha-synuclein aggregates through secondary nucleation, a process that has been implicated in Parkinson's disease and related synucleinopathies. We use a combination of docking simulations followed by machine learning to first identify initial hit compounds and then explore the chemical space around these compounds. Our results demonstrate that this approach leads to the identification of novel chemical matter with an improved hit rate and potency over conventional similarity search approaches.


Sign in / Sign up

Export Citation Format

Share Document