WEHRL ENTROPY AND ENTANGLEMENT OF A TIME-DEPENDENT TWO-LEVEL TRAPPED ION INTERACTING WITH A LASER FIELD

2008 ◽  
Vol 06 (02) ◽  
pp. 331-339
Author(s):  
MAHMOUD ABDEL-ATY ◽  
SAYED ABDEL-KHALEK ◽  
ABDEL-SHAFY F. OBADA

The time evolution of the atomic Wehrl entropy and long-lived entanglement generation using a single trapped ion interacting with a laser field are analyzed. Starting from the Heisenberg equation of motion, an exact solution of the system is obtained by indicating that there are some interesting features when a time-dependent modulating function is considered. We demonstrate that the long-living quantum entanglement can be obtained using the time-independent interaction when the field is initially in a pair cat states.

2013 ◽  
Vol 28 (05n06) ◽  
pp. 1350011
Author(s):  
G. ALENCAR ◽  
I. GUEDES ◽  
R. R. LANDIM ◽  
R. N. COSTA FILHO

In this work, we investigate the quantum theory of the Kalb–Ramond fields propagating in D-dimensional de Sitter space–times using the dynamic invariant method developed by Lewis and Riesenfeld [J. Math. Phys.10, 1458 (1969)] to obtain the solution of the time-dependent Schrödinger equation. The wave function is written in terms of a c-number quantity satisfying the Milne–Pinney equation, whose solution can be expressed in terms of two independent solutions of the respective equation of motion. We obtain the exact solution for the quantum Kalb–Ramond field in the de Sitter background and discuss its relation with the Cremmer–Scherk–Kalb–Ramond model.


2011 ◽  
Vol 2011 ◽  
pp. 1-28 ◽  
Author(s):  
J. L. González-Santander ◽  
J. M. Valdés Placeres ◽  
J. M. Isidro

We present a closed analytical solution for the time evolution of the temperature field in dry grinding for any time-dependent friction profile between the grinding wheel and the workpiece. We base our solution in the framework of the Samara-Valencia model Skuratov et al., 2007, solving the integral equation posed for the case of dry grinding. We apply our solution to segmental wheels that produce an intermittent friction over the workpiece surface. For the same grinding parameters, we plot the temperature fields of up- and downgrinding, showing that they are quite different from each other.


2008 ◽  
Vol 22 (03) ◽  
pp. 267-280 ◽  
Author(s):  
JEONG RYEOL CHOI ◽  
JUN-YOUNG OH

In linear media with time-dependent parameters, various commutation relations for the field operators obtained from the Lewis–Riesenfeld invariant operator method are calculated. We investigated whether our development is self-consistent or not by evaluating the Heisenberg equation of motion for field operators using the associated commutation relation.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Sébastien Descotes-Genon ◽  
Martín Novoa-Brunet ◽  
K. Keri Vos

Abstract We consider the time-dependent analysis of Bd→ KSℓℓ taking into account the time-evolution of the Bd meson and its mixing into $$ {\overline{B}}_d $$ B ¯ d . We discuss the angular conventions required to define the angular observables in a transparent way with respect to CP conjugation. The inclusion of time evolution allows us to identify six new observables, out of which three could be accessed from a time-dependent tagged analysis. We also show that these observables could be obtained by time-integrated measurements in a hadronic environment if flavour tagging is available. We provide simple and precise predictions for these observables in the SM and in NP models with real contributions to SM and chirally flipped operators, which are independent of form factors and charm-loop contributions. As such, these observables provide robust and powerful cross-checks of the New Physics scenarios currently favoured by global fits to b → sℓℓ data. In addition, we discuss the sensitivity of these observables with respect to NP scenarios involving scalar and tensor operators, or CP-violating phases. We illustrate how these new observables can provide a benchmark to discriminate among the various NP scenarios in b → sμμ. We discuss the extension of these results for Bs decays into f0, η or η′.


Sign in / Sign up

Export Citation Format

Share Document