A TWO-STEP CHANNEL-ENCRYPTING QUANTUM KEY DISTRIBUTION PROTOCOL

2010 ◽  
Vol 08 (06) ◽  
pp. 1013-1022 ◽  
Author(s):  
FEN-ZHUO GUO ◽  
FEI GAO ◽  
QIAO-YAN WEN ◽  
FU-CHEN ZHU

A two-step channel-encrypting quantum key distribution protocol is proposed. Using the previously shared EPR pairs as the quantum key, two bits of classical key can be established via one information carrier EPR state on average. In theory, the efficiency of this protocol reaches 100%, and there is no need to consume any entangled states including both the quantum key and the information carriers in ideal condition. The protocol can resist the particular attack that is fatal to other some channel-encrypting schemes. Principally, we prove the security against the most general individual attack of this protocol. Entanglement collapse in practical situation, as well as the realistic implementation of this protocol is also discussed.

2009 ◽  
Vol 9 (11&12) ◽  
pp. 50-62
Author(s):  
A. Eusebi ◽  
S. Mancini

We present an extension to a d-ary alphabet of a recently proposed deterministic quantum key distribution protocol. It relies on the use of mutually unbiased bases in prime power dimension d, for which we provide an explicit expression. Then, by considering a powerful individual attack, we show that the security of the protocol is maximal for d=3.


2005 ◽  
Vol 13 (23) ◽  
pp. 9415 ◽  
Author(s):  
Yun-kun Jiang ◽  
Xiang-Bin Wang ◽  
Bao-Sen Shi ◽  
Akihisa Tomita

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chia-Wei Tsai ◽  
Chun-Wei Yang

AbstractThe mediated semi-quantum key distribution (MSQKD) protocol is an important research issue that lets two classical participants share secret keys securely between each other with the help of a third party (TP). However, in the existing MSQKD protocols, there are two improvable issues, namely (1) the classical participants must be equipped with expensive detectors to avoid Trojan horse attacks and (2) the trustworthiness level of TP must be honest. To the best of our knowledge, none of the existing MSQKD protocols can resolve both these issues. Therefore, this study takes Bell states as the quantum resource to propose a MSQKD protocol, in which the classical participants do not need a Trojan horse detector and the TP is dishonest. Furthermore, the proposed protocol is shown to be secure against well-known attacks and the classical participants only need two quantum capabilities. Therefore, in comparison to the existing MSQKD protocols, the proposed protocol is better practical.


2021 ◽  
Vol 2056 (1) ◽  
pp. 012011
Author(s):  
Chan Myae Hein ◽  
T F Kamalov

Abstract A new eavesdropping strategy is proposed for the Quantum Key Distribution (QKD) protocol. This scheme represents a new kind of intercept/resend strategy based on Bell’s theorem. Quantum key distribution (QKD) provides the foremost reliable form of secure key exchange, using only the input-output statistics of the devices to realize information-theoretic security. In this paper, we present an improved QKD protocol that can simultaneously distribute the quantum secret key. We are already using the QKD protocol with simulated results matched completely with the theoretical concepts.


Sign in / Sign up

Export Citation Format

Share Document