POLARIZATION ENTANGLEMENT CONCENTRATIONS WITH LESS-HYPERENTANGLED PHOTON PAIRS IN MULTIPLE DEGREES OF FREEDOM

2012 ◽  
Vol 10 (07) ◽  
pp. 1250075 ◽  
Author(s):  
YING GUO ◽  
HONGYAN KUANG ◽  
DAZU HUANG ◽  
ZHISHENG ZHAO

We demonstrate two entanglement concentration protocols (ECPs) for photon pairs in less-hyperentanglement, the simultaneous entanglement in multiple degrees of freedom. Using these ECPs, some maximally entangled states in polarization can be reconstructed deterministically from less-hyperentangled ones shared between remote participants. Both of the success probabilities are 100% in principle, and they do not require additional single photons. The former is implemented with the passive linear optics, which is achievable with current technology. The later adopts the cross-Kerr nonlinearity media to complete this task, which can increase the efficiency of the entanglement concentration process since it does not require the sophisticated single-photon detectors for measurements. The two ECPs are useful for practical long-distance quantum communication due to the fact that the entangled state in either the spatial degree of freedom or the frequency degree of freedom suffers little from channel noise in optical fiber.

2021 ◽  
Author(s):  
Yu SUN ◽  
Jinsong Zhou ◽  
Dao Gong ◽  
Yuanjin Ji

Abstract To absorb the vibration of the carbody of the high-speed train in multiple degrees of freedom, a multi-degree of freedom dynamic vibration absorber (MDOF DVA) is proposed. Installed under the carbody, the natural vibration frequency of the MDOF DVA from each DOF can be designed as a DVA for each single degree of freedom of the carbody. Hence, a 12-DOF model including the main vibration system and a MDOF DVA is established, and the principle of Multi-DOF dynamic vibration absorption is analyzed by combining the design method of single DVA and genetic algorithm. Based on a high-speed train dynamics model including an under-carbody MDOF DVA, the vibration control effect on each DOF of the MDOF DVA is analyzed by the virtual excitation method. Moreover, a high static and low dynamic stiffness (HSLDS) mount is proposed based on a cam–roller–spring mechanism for the installation of the MDOF DVA due to the requirement of the low vertical dynamic stiffness. From the dynamic simulation of a non-linear model in time-domain, the vibration control performance of the MDOF DVA installed with nonlinear HSLDS mount on the carbody is analyzed. The results show that the MDOF DVA can absorb the vibration of the carbody in multiple degrees of freedom effectively, and improve the running ride quality of the vehicle.


Author(s):  
David H. Myszka ◽  
Austin M. Fischer ◽  
Andrew P. Murray

This paper presents a study on the energy utilization of planar automation mechanisms that operate with controlled moves. Designers of factory automation for pick & place tasks often select multiple degree-of-freedom robotic devices. With multiple degrees-of-freedom, task flexibility is available, but many operations require little or no flexibility. The majority of research on the energy usage of these robot devices for pick & place tasks focuses on path planning. The study presented in this paper explores the energy savings in using low degree-of-freedom devices and the influence of design parameter selection. Energy predictor equations are developed and confirmed through experimentation. Various positioning mechanisms of differing dimensions are studied for trends in energy utilization. Lastly, an actuator control strategy is proposed for further reducing energy requirements. The study concludes that energy usage can be substantially decreased in pick & place applications by reducing the degrees of freedom of the device, implementing a prudent mechanism architecture, ideally selecting mechanism dimensions and optimally controlling the actuator(s).


Author(s):  
Yan Chen ◽  
Huijuan Feng ◽  
Jiayao Ma ◽  
Rui Peng ◽  
Zhong You

The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.


2004 ◽  
Vol 4 (6&7) ◽  
pp. 526-536
Author(s):  
M. Sasaki

We review our experiment on quantum source and channel codings, the most fundamental operations in quantum info-communications. For both codings, entangling letter states is essential. Our model is based on the polarization-location coding, and a quasi-single photon linear optics implementation to entangle the polarization and location degrees of freedom. Using single-photon events in a subset of possible cases, we simulate quantum coding-decoding operations for nonorthogonal states under the quasi-pure state condition. In the quantum channel coding, we double the spatial bandwidth (number of optical paths), and demonstrate the information more than double can be transmitted. In the quantum source coding, we halve the spatial bandwidth to compress the data and decompress the original data with the high fidelity approaching the theoretical limit.


Nature ◽  
2015 ◽  
Vol 518 (7540) ◽  
pp. 516-519 ◽  
Author(s):  
Xi-Lin Wang ◽  
Xin-Dong Cai ◽  
Zu-En Su ◽  
Ming-Cheng Chen ◽  
Dian Wu ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 4995
Author(s):  
Seongnoh Ahn ◽  
Gun Park ◽  
Hyungchul Yoon ◽  
Jae-Hyeok Han ◽  
Jongwon Jung

Modeling the soil–structure interaction (SSI) in seismic design involves the use of soil response curves for single-degree-of-freedom (SDOF) structures; however, real structures have multiple degrees of freedom (MDOF). In this study, shaking-table-derived p-y curves for SDOF and MDOF superstructures were compared using numerical analysis. It was found that an MDOF structure experienced less displacement than an SDOF structure of the same weight, but the effect of increasing the DOF decreased at greater pile depths. Numerical analysis results estimated using the natural periods and mass participation rates of the structures were similar to those of shaking table tests. Abbreviations: finite element: FE; frequency response function: FRF; multiple degrees of freedom: MDOF; single degree of freedom: SDOF; soil–structure interaction: SSI.


2010 ◽  
Vol 10 (3&4) ◽  
pp. 272-281
Author(s):  
Y.-B. Sheng ◽  
F.-G. Deng ◽  
H.-Y. Zhou

We present a single-photon entanglement concentration protocol for long-distance quantum communication with quantum nondemolition detector. It is the first concentration protocol for single-photon entangled states and it dose not require the two parties of quantum communication to know the accurate information about the coefficient $\alpha$ and $\beta$ of the less entangled states. Also, it does not resort to sophisticated single-photon detectors, which makes this protocol more feasible in current experiments. Moreover, it can be iterated to get a higher efficiency and yield. All these advantages maybe make this protocol have more practical applications in long-distance quantum communication and quantum internet.


Sign in / Sign up

Export Citation Format

Share Document