scholarly journals JRSP of three-particle state via three tripartite GHZ class in quantum noisy channels

2016 ◽  
Vol 14 (07) ◽  
pp. 1650034 ◽  
Author(s):  
Babatunde James Falaye ◽  
Guo-Hua Sun ◽  
Oscar Camacho-Nieto ◽  
Shi-Hai Dong

We present a scheme for joint remote state preparation (JRSP) of three-particle state via three tripartite Greenberger–Horne–Zeilinger (GHZ) entangled states as the quantum channel linking the parties. We use eight-qubit mutually orthogonal basis vector as measurement point of departure. The likelihood of success for this scheme has been found to be [Formula: see text]. However, by putting some special cases into consideration, the chances can be ameliorated to [Formula: see text] and 1. The effects of amplitude-damping noise, phase-damping noise and depolarizing noise on this scheme have been scrutinized and the analytical derivations of fidelities for the quantum noisy channels have been presented. We found that for [Formula: see text], the states conveyed through depolarizing channel lose more information than phase-damping channel while the information loss through amplitude damping channel is most minimal.

2002 ◽  
Vol 16 (01n02) ◽  
pp. 19-25 ◽  
Author(s):  
XIAN-TING LIANG

The minimal entanglement fidelities of the phase damping channel, depolarizing channel, two-Pauli channel and amplitude damping channel are calculated. It is shown that for the same condition, the minimal fidelity of the phase damping channel is the biggest among the four channels. The minimal fidelity of the depolarizing channel is bigger than the other two.


2002 ◽  
Vol 16 (12) ◽  
pp. 441-448 ◽  
Author(s):  
XIAN-TING LIANG ◽  
HONG-YI FAN

In this paper, we calculate the entanglement-assisted classical capacities of the depolarizing channel, the phase damping channel, the phase flip channel, the bit flip channel, the bit-phase flip channel, the two-Pauli channel and the amplitude channel, and discuss the analytical results obtained. The Stokes papametrization representation of a qubit and the characteristic of unitary covariance of some quantum noisy channels are used in the calculations.


2020 ◽  
Vol 18 (04) ◽  
pp. 2050018
Author(s):  
R. Laghmach ◽  
H. El Hadfi ◽  
B. Maroufi ◽  
M. Daoud

We give the explicit expressions of quantum Fisher information and skew information for a two-qubit Bell states. We investigate their dynamics under the decoherence effects: phase-damping channel, depolarizing channel and amplitude-damping channel. We also discuss the thermal entanglement quantified by Wootters concurrence for these three decoherence channels and we compare its dynamical behavior with the quantum Fisher information and skew information. We then use this comparison to investigate the influence of noisy channels on thermal entanglement and its role in boosting the performance of metrology protocols. It is shown that the correlations in two-qubit Bell states are more resistant to phase-damping channel and depolarizing channels.


2017 ◽  
Vol 381 (6) ◽  
pp. 581-587 ◽  
Author(s):  
Adenike Grace Adepoju ◽  
Babatunde James Falaye ◽  
Guo-Hua Sun ◽  
Oscar Camacho-Nieto ◽  
Shi-Hai Dong

2016 ◽  
Vol 66 (2) ◽  
pp. 186 ◽  
Author(s):  
Vishal Sharma

<p>Entanglement is an important resource for various applications of quantum computation. Another important endeavor is to establish the role of entanglement in practical implementation where system of interest is affected by various kinds of noisy channels. Here, a single classical bit is used to send information under the influence of a noisy quantum channel. The entanglement content of quantum states is computed under noisy channels such as amplitude damping, phase damping, squeesed generalised amplitude damping, Pauli channels and various collective noise models on the protocols of quantum key distribution.</p><p> </p>


2020 ◽  
Vol 66 (3 May-Jun) ◽  
pp. 378 ◽  
Author(s):  
S. Ahadpour ◽  
F. Mirmasoudi

In quantum information theory, effects of quantum noise on teleportation are undeniable. Hence,we investigate the effect of noisy channels including amplitude damping, phase damping, depolarizing and phase ip on the teleported state between Alice and Bob where they share an entangled state by using atom-eld interaction state. We analyze the delity and quantum correlations as a function of decoherence rates and time scale of a state to be teleported. We observe that the average delityand quantum correlations accurately depend on types of noise acting on quantum channels. It is found that atom-eld interaction states are affected by amplitude damping channel are more useful for teleportation than when the shared qubites are affected by noisy channels such as AD channel and phase ip. We also observe that if the quantum channels is subject to phase ip noise, the average delity reproduces initial quantum correlations to possible values. On the other hand,not only all the noisy quantum channels do not always destroy average delity but also they can yield the highest delity in noisy conditions. In the current demonstration, our results provide that the average delity can have larger than 2/3 in front of the noise of named other channels with increasing decoherenc strength. Success in quantum states transfer in the present noise establishes the important of studing noisy channels.


2012 ◽  
Vol 12 (3&4) ◽  
pp. 253-261
Author(s):  
Satyabrata Adhikari ◽  
Indranil Chakrabarty ◽  
Pankaj Agrawal

In a realistic situation, the secret sharing of classical or quantum information will involve the transmission of this information through noisy channels. We consider a three qubit pure state. This state becomes a mixed-state when the qubits are distributed over noisy channels. We focus on a specific noisy channel, the phase-damping channel. We propose a protocol for secret sharing of classical information with this and related noisy channels. This protocol can also be thought of as cooperative superdense coding. We also discuss other noisy channels to examine the possibility of secret sharing of classical information.


2019 ◽  
Vol 198 ◽  
pp. 00015
Author(s):  
Kapil K. Sharma ◽  
Swaroop Ganguly

In the present paper, we study spin squeezing under decoherence in the superposition of tripartite maximally entangled GHZ and W states. Here we use amplitude damping, phase damping and depolarisation channel. We have investigated the dynamics of spin squeezing with the interplay of super-position and decoherence parameters with different directions of the mean spin vector. We have found the mixture of GHZ and W states is robust against spin squeezing generation for amplitude damping and phase damping channels for certain directions of the mean spin vector. However, the depolarisation channel performs well for spin squeezing generation and generates permanent spin squeezing in the superposition of GHZ and W states.


2015 ◽  
Vol 54 (8) ◽  
pp. 2505-2515 ◽  
Author(s):  
Zhan-Hong Wei ◽  
Xiu-Bo Chen ◽  
Xin-Xin Niu ◽  
Yi-Xian Yang

Sign in / Sign up

Export Citation Format

Share Document