KINEMATIC ANALYSIS AND PROTOTYPE OF A METAMORPHIC ANTHROPOMORPHIC HAND WITH A RECONFIGURABLE PALM

2011 ◽  
Vol 08 (03) ◽  
pp. 459-479 ◽  
Author(s):  
GUOWU WEI ◽  
JIAN S. DAI ◽  
SHUXIN WANG ◽  
HAIFENG LUO

A novel metamorphic anthropomorphic hand is for the first time introduced in this paper. This robotic hand has a reconfigurable palm that generates changeable topology and augments dexterity and versatility of the hand. Structure design of the robotic hand is presented and based on mechanism decomposition kinematics of the metamorphic anthropomorphic hand is characterized with closed-form solutions leading to the workspace investigation of the robotic hand. With characteristic matrix equation, twisting motion of the metamorphic robotic hand is investigated to reveal both dexterity and manipulability of the metamorphic hand. Through a prototype, grasping and prehension of the robotic hand are tested to illustrate characteristics of the new metamorphic anthropomorphic hand.

Author(s):  
Guowu Wei ◽  
Vahid Aminzadeh ◽  
Evangelos Emmanouil ◽  
Jian S. Dai

A four-fingered metamorphic robotic hand with a reconfigurable palm is presented in this paper with the application in deboning operation of meat industry. This robotic hand has a reconfigurable palm that generates changeable topology and augments dexterity and versatility for the hand. Mechanical structure and design of the robotic hand are presented and based on mechanism decomposition, kinematics of the metamorphic hand is investigated with closed-form solutions leading to the workspace characterization of the robotic hand. Based on the kinematics of the four-fingered metamorphic hand, utilizing product-of-exponentials formula, grasp map and grasp constraint of the hand are then formulated revealing the grasp robustness and manipulability performed by the metamorphic hand. A prototype of the four-fingered metamorphic hand is consequently fabricated and integrated with low level control and sensor systems leading to a scenario of applying the hand in the field of meat industry for deboning operation.


Author(s):  
Arunava Biswas ◽  
Gary L. Kinzel

Abstract In this paper an inversion approach is developed for the analysis of planar mechanisms using closed-form equations. The vector loop equation approach is used, and the occurrence matrices of the variables in the position equations are obtained. After the loop equations are formed, dependency checking of the unknowns is performed to determine if it is possible to solve for any two equations in two unknowns. For the cases where the closed-form solutions cannot be implemented directly, possible inversions of the mechanism are studied. If the vector loop equations for an inversion can be solved in closed-form, they are identified and solved, and the solutions are transformed back to the original linkage. The method developed in this paper eliminates the uncertainties involved, and the large number of computations required in solving the equations by iterative methods.


Author(s):  
Andre Leier ◽  
Tatiana T. Marquez-Lago

The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact with respect to the former, trajectories obtained from a delay SSA are exact representations of the underlying delay CME (DCME). However, in contrast to the CME, no closed-form solutions have so far been derived for any kind of DCME. In this paper, we describe for the first time direct and closed solutions of the DCME for simple reaction schemes, such as a single-delayed unimolecular reaction as well as chemical reactions for transcription and translation with delayed mRNA maturation. We also discuss the conditions that have to be met such that such solutions can be derived.


2009 ◽  
Vol 214 (2) ◽  
pp. 442-450 ◽  
Author(s):  
Ai-Guo Wu ◽  
Gang Feng ◽  
Junqiang Hu ◽  
Guang-Ren Duan

2014 ◽  
Vol 267 ◽  
pp. 72-81 ◽  
Author(s):  
Caiqin Song ◽  
Hongxing Rui ◽  
Xiaodong Wang ◽  
Jianli Zhao

2011 ◽  
Vol 110-116 ◽  
pp. 5078-5084
Author(s):  
Behrouz Behtoee ◽  
Rahim Faez

Elmore delay has been widely used as an analytical estimate of the interconnect delays in the performance-driven synthesis and layout of VLSI routing topologies. In this paper, Closed-form solutions for the 50% delay, rise time and overshoots of the step response of distributed Single Wall Carbon Nanotube (SWCNT), which consists RC and RLC parts, are presented for the first time. The proposed approach retains both efficiency and simplicity of the equivalent Elmore model with significantly improved accuracy, through surface fitting (3D) instead of curve fitting (2D).


2016 ◽  
Vol 16 (08) ◽  
pp. 1550079 ◽  
Author(s):  
Yufeng Xing ◽  
Wei Xiang

This paper studies the eigenbuckling of Mindlin plate with two adjacent edges clamped and the remaining edges simply supported or clamped by using the separation of variables method, and the concise and explicit closed-form solutions are obtained for the first time. The cases involving free edges can also be dealt with if there are two opposite edges simply supported. The closed-form solutions are in good agreement with the existing solutions, thus the validity of present method and accuracy of the obtained solutions are verified. This paper proves to be a major development of analytical method since it has long been acknowledged that the eigenbuckling of rectangular plates without two parallel edges simply supported are not amenable to analytical solutions.


2012 ◽  
Vol 218 (19) ◽  
pp. 9730-9741 ◽  
Author(s):  
Ai-Guo Wu ◽  
Enze Zhang ◽  
Fuchun Liu

2003 ◽  
Vol 125 (2) ◽  
pp. 308-315 ◽  
Author(s):  
Massimo Callegari ◽  
Matteo Tarantini

A new three-d.o.f. parallel mechanism, with 3-RPC topology, is presented in the paper and its kinematics is studied. The proposed architecture, if proper geometrical conditions are satisfied, has an overconstrained structure which allows motions of pure translation. The simple structure of the mechanism allows finding closed-form solutions for both inverse and direct position kinematics; the differential analysis has been developed as well, by deriving a symbolic expression for the Jacobian matrix. Then, some design considerations are exposed to keep the singular points out of the working space of the mechanism and all the isotropic configurations are eventually identified.


Sign in / Sign up

Export Citation Format

Share Document