mrna maturation
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 27)

H-INDEX

22
(FIVE YEARS 3)

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 18
Author(s):  
Jose J. G. Marin ◽  
Maria Reviejo ◽  
Meraris Soto ◽  
Elisa Lozano ◽  
Maitane Asensio ◽  
...  

The two most frequent primary cancers affecting the liver, whose incidence is growing worldwide, are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), which are among the five most lethal solid tumors with meager 5-year survival rates. The common difficulty in most cases to reach an early diagnosis, the aggressive invasiveness of both tumors, and the lack of favorable response to pharmacotherapy, either classical chemotherapy or modern targeted therapy, account for the poor outcome of these patients. Alternative splicing (AS) during pre-mRNA maturation results in changes that might affect proteins involved in different aspects of cancer biology, such as cell cycle dysregulation, cytoskeleton disorganization, migration, and adhesion, which favors carcinogenesis, tumor promotion, and progression, allowing cancer cells to escape from pharmacological treatments. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the available information regarding the impact of AS on liver carcinogenesis and the development of malignant characteristics of HCC and iCCA, whose understanding is required to develop novel therapeutical approaches aimed at manipulating the phenotype of cancer cells.


2021 ◽  
pp. 1-7
Author(s):  
Ruth Ruiz Esparza-Garrido ◽  
Miguel Angel Velazquez-Flores ◽  
Ruth Ruiz Esparza-Garrido

Non-coding RNAs are conformed by a large repertoire of RNA molecules with unimaginable tridimensional structures and functions. Small nuclear RNAs are an essential part of the spliceosome machinery, which is crucial for proper mRNA maturation. It is important to add that U6, one of the four snRNAs forming the spliceosome has been extensively studied. Full-length U6 (U6-1) loci are widely dispersed throughout the genome (200-900 copies), but a few U6 full-length loci have been identified to date as potentially active genes. The importance of U6 to carry out, together with other snRNAs, the catalytic activity and recognition of annealing target sequences, its evolution in the genome and the fact that the genome has many U6 copies and pseudogenes, its association with retrotransposition, as well as their implication in diseases is discussed in this review.


RNA ◽  
2021 ◽  
pp. rna.078886.121
Author(s):  
Dominik Burri ◽  
Mihaela Zavolan

During pre-mRNA maturation 3p end processing can occur at different polyadenylation sites in the 3 prime untranslated region (3p UTR) to give rise to transcript isoforms that differ in the length of their 3p UTRs. Longer 3p UTRs contain additional cis-regulatory elements that impact the fate of the transcript and/or of the resulting protein. Extensive alternative polyadenylation (APA) has been observed in cancers, but the mechanisms and roles remain elusive. In particular, it is unclear whether the APA occurs in the malignant cells or in other cell types that infiltrate the tumor. To resolve this, we developed a computational method, called SCUREL, that quantifies changes in 3p UTR length between groups of cells, including cells of the same type originating from tumor and control tissue. We used this method to study APA in human lung adenocarcinoma (LUAD). SCUREL relies solely on annotated 3p UTRs and on control systems, such as T cell activation and spermatogenesis gives qualitatively similar results at much greater sensitivity compared to the previously published scAPA method. In the LUAD samples, we find a general trend towards 3p UTR shortening not only in cancer cells compared to the cell type of origin, but also when comparing other cell types from the tumor vs. the control tissue environment. However, we also find high variability in the individual targets between patients. The findings help to understand the extent and impact of APA in LUAD, which may support improvements in diagnosis and treatment.


2021 ◽  
Vol 49 (4) ◽  
pp. 1829-1839
Author(s):  
Huakun Zhang ◽  
Yiliang Ding

RNA folding is an intrinsic property of RNA that serves a key role in every step of post-transcriptional regulation of gene expression, from RNA maturation to translation in plants. Recent developments of genome-wide RNA structure profiling methods have transformed research in this area enabling focus to shift from individual molecules to the study of tens of thousands of RNAs. Here, we provide a comprehensive review of recent advances in the field. We discuss these new insights of RNA structure functionality within the context of post-transcriptional regulation including mRNA maturation, translation, and RNA degradation in plants. Notably, we also provide an overview of how plants exhibit different RNA structures in response to environmental changes.


2021 ◽  
Author(s):  
Dominik Burri ◽  
Mihaela Zavolan

During pre-mRNA maturation 3' end processing can occur at different polyadenylation sites in the 3' untranslated region (3' UTR) to give rise to transcript isoforms that differ in the length of their 3' UTRs. Longer 3' UTRs contain additional cis-regulatory elements that impact the fate of the transcript and/or of the resulting protein. Extensive alternative polyadenylation (APA) has been observed in cancers, but the mechanisms and roles remain elusive. In particular, it is unclear whether the APA occurs in the malignant cells or in other cell types that infiltrate the tumor. To resolve this, we developed a computational method, called SCUREL, that quantifies changes in 3' UTR length between groups of cells, including cells of the same type originating from tumor and control tissue. We used this method to study APA in human lung adenocarcinoma (LUAD). SCUREL relies solely on annotated 3' UTRs and on control systems, such as T cell activation and spermatogenesis gives qualitatively similar results at much greater sensitivity compared to the previously published scAPA method. In the LUAD samples, we find a general trend towards 3' UTR shortening not only in cancer cells compared to the cell type of origin, but also when comparing other cell types from the tumor vs. the control tissue environment. However, we also find high variability in the individual targets between patients. The findings help to understand the extent and impact of APA in LUAD, which may support improvements in diagnosis and treatment.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 706
Author(s):  
Luis Adrián De Jesús-González ◽  
Selvin Palacios-Rápalo ◽  
José Manuel Reyes-Ruiz ◽  
Juan Fidel Osuna-Ramos ◽  
Carlos Daniel Cordero-Rivera ◽  
...  

Various viruses alter nuclear pore complex (NPC) integrity to access the nuclear content favoring their replication. Alteration of the nuclear pore complex has been observed not only in viruses that replicate in the nucleus but also in viruses with a cytoplasmic replicative cycle. In this last case, the alteration of the NPC can reduce the transport of transcription factors involved in the immune response or mRNA maturation, or inhibit the transport of mRNA from the nucleus to the cytoplasm, favoring the translation of viral mRNAs or allowing access to nuclear factors necessary for viral replication. In most cases, the alteration of the NPC is mediated by viral proteins, being the viral proteases, one of the most critical groups of viral proteins that regulate these nucleus–cytoplasmic transport changes. This review focuses on the description and discussion of the role of viral proteases in the modification of nucleus–cytoplasmic transport in viruses with cytoplasmic replicative cycles and its repercussions in viral replication.


ACS Catalysis ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 4319-4326
Author(s):  
Jure Borišek ◽  
Alessandra Magistrato
Keyword(s):  

2021 ◽  
Vol 22 (4) ◽  
pp. 1503 ◽  
Author(s):  
Flora Brozzi ◽  
Romano Regazzi

Circular RNAs (circRNAs) constitute a large class of non-coding RNAs characterized by a covalently closed circular structure. They originate during mRNA maturation through a modification of the splicing process and, according to the included sequences, are classified as Exonic, Intronic, or Exonic-Intronic. CircRNAs can act by sequestering microRNAs, by regulating the activity of specific proteins, and/or by being translated in functional peptides. There is emerging evidence indicating that dysregulation of circRNA expression is associated with pathological conditions, including cancer, neurological disorders, cardiovascular diseases, and diabetes. The aim of this review is to provide a comprehensive and updated view of the most abundant circRNAs expressed in pancreatic islet cells, some of which originating from key genes controlling the differentiation and the activity of insulin-secreting cells or from diabetes susceptibility genes. We will particularly focus on the role of a group of circRNAs that contribute to the regulation of β-cell functions and that display altered expression in the islets of rodent diabetes models and of type 2 diabetic patients. We will also provide an outlook of the unanswered questions regarding circRNA biology and discuss the potential role of circRNAs as biomarkers for β-cell demise and diabetes development.


Sign in / Sign up

Export Citation Format

Share Document