Heel-Contact Toe-Off Walking Pattern Generator Based on the Linear Inverted Pendulum

2016 ◽  
Vol 13 (01) ◽  
pp. 1650002 ◽  
Author(s):  
Yukitoshi Minami Shiguematsu ◽  
Przemyslaw Kryczka ◽  
Kenji Hashimoto ◽  
Hun-Ok Lim ◽  
Atsuo Takanishi

We propose a novel heel-contact toe-off walking pattern generator for a biped humanoid robot. It is divided in two stages: a simple model stage where a Linear Inverted Pendulum (LIP) based heel-contact toe-off walking model based on the so-called functional rockers of the foot (heel, ankle and forefoot rockers) is used to calculate step positions and timings, and the Center of Mass (CoM) trajectory taking step lengths as inputs, and a multibody dynamics model stage, where the final pattern to implement on the humanoid robot is obtained from the output of the first simple model stage. The final pattern comprises the Zero Moment Point (ZMP) reference, the joint angle references and the end effector references. The generated patterns were implemented on our robotic platform, WABIAN-2R to evaluate the generated walking patterns.

2012 ◽  
Vol 197 ◽  
pp. 415-422 ◽  
Author(s):  
Hong Liu ◽  
Qing Sun

It is a great challenge to plan motion for humanoid robots in complex environments especially when the terrain is cluttered and discrete. To address this problem, a novel method is proposed in this paper by planning the gait according to the stance sequence and ZMP (Zero Moment Point) reference. It consists of two components: an adaptive footstep planner and a walking pattern generator. The adaptive footstep planner can generate the stance path according to the walking rules and adjust the orientation of body relevantly. As the footstep locations are determined, Linear Inverted Pendulum Model (LIPM) is used to generate the walking pattern with a moving ZMP reference. As demonstrated in experiments on the humanoid robot HOAP-2, our method can successfully plan footstep trajectories as well as generate the stable and natural-looking gait in typical cluttered and discrete environments.


2017 ◽  
Vol 14 (02) ◽  
pp. 1750004 ◽  
Author(s):  
Kinam Lee ◽  
Young-Jae Ryoo ◽  
Kyung-Seok Byun ◽  
Jaeyoung Choi

In this paper, we propose an omni-directional walking pattern generator to make a child-sized humanoid robot walk in any direction. The proposed omni-directional walking pattern generator creates walking patterns for which zero moment point (ZMP) is located on the center of the supporting foot. For humanoid robots to adapt to human’s life and perform missions, it should be taller than the minimum height of a child. In this paper, we designed a humanoid robot which is similar to a child who is taller than 1[Formula: see text]m. We show the humanoid robot’s kinematics, design of a three-dimensional (3D) model, develop mechanisms and the hardware structures with servo-motors and compact-size PC. The developed humanoid robot “CHARLES2” stands for Cognitive Humanoid Autonomous Robot with Learning and Evolutionary System-Two. The inverse kinematics of its legs is described. The principle of the omni-directional walking pattern generator is discussed to create walking motions and overcome the robot’s mechanical deficiencies. We applied the proposed omni-directional walking pattern generator based on ZMP. Through experiments, we analyzed walking patterns according to the creation and changing parameter values. The results of the experiments are presented for the efficacy of our proposed walking engine.


2008 ◽  
Vol 74 (738) ◽  
pp. 380-385
Author(s):  
Koki KAMETA ◽  
Akinori SEKIGUCHI ◽  
Yuichi TSUMAKI ◽  
Yoshikazu KANAMIYA ◽  
D. N. NENCHEV

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Chanwoo Chun ◽  
Tirthabir Biswas ◽  
Vikas Bhandawat

Changes in walking speed are characterized by changes in both the animal’s gait and the mechanics of its interaction with the ground. Here we study these changes in walking Drosophila. We measured the fly’s center of mass movement with high spatial resolution and the position of its footprints. Flies predominantly employ a modified tripod gait that only changes marginally with speed. The mechanics of a tripod gait can be approximated with a simple model – angular and radial spring-loaded inverted pendulum (ARSLIP) – which is characterized by two springs of an effective leg that become stiffer as the speed increases. Surprisingly, the change in the stiffness of the spring is mediated by the change in tripod shape rather than a change in stiffness of individual legs. The effect of tripod shape on mechanics can also explain the large variation in kinematics among insects, and ARSLIP can model these variations.


2008 ◽  
Vol 2008 (0) ◽  
pp. _1P1-B02_1-_1P1-B02_4
Author(s):  
Yuzuru HARADA ◽  
Kentaro MIYAHARA ◽  
Yoshikazu KANAMIYA ◽  
Daisuke SATO

2009 ◽  
Vol 21 (3) ◽  
pp. 311-316 ◽  
Author(s):  
Kensuke Harada ◽  
◽  
Mitsuharu Morisawa ◽  
Shin-ichiro Nakaoka ◽  
Kenji Kaneko ◽  
...  

For the purpose of realizing the humanoid robot walking on uneven terrain, this paper proposes the kinodynamic gait planning method where both kinematics and dynamics of the system are considered. We can simultaneously plan both the foot-place and the whole-body motion taking the dynamical balance of the robot into consideration. As a dynamic constraint, we consider the differential equation of the robot's CoG. To solve this constraint, we use a walking pattern generator. We randomly sample the configuration space to search for the path connecting the start and the goal configurations. To show the effectiveness of the proposed methods, we show simulation and experimental results where the humanoid robot HRP-2 walks on rocky cliff with hands contacting the environment.


Author(s):  
Ya-Fang Ho ◽  
Tzuu-Hseng S. Li ◽  
Ping-Huan Kuo ◽  
Yan-Ting Ye

AbstractThis paper presents a parameterized gait generator based on linear inverted pendulum model (LIPM) theory, which allows users to generate a natural gait pattern with desired step sizes. Five types of zero moment point (ZMP) components are proposed for formulating a natural ZMP reference, where ZMP moves continuously during single support phases instead of staying at a fixed point in the sagittal and lateral plane. The corresponding center of mass (CoM) trajectories for these components are derived by LIPM theory. To generate a parameterized gait pattern with user-defined parameters, a gait planning algorithm is proposed, which determines related coefficients and boundary conditions of the CoM trajectory for each step. The proposed parameterized gait generator also provides a concept for users to generate gait patterns with self-defined ZMP references by using different components. Finally, the feasibility of the proposed method is validated by the experimental results with a teen-sized humanoid robot, David, which won first place in the sprint event at the 20th Federation of International Robot-soccer Association (FIRA) RoboWorld Cup.


Sign in / Sign up

Export Citation Format

Share Document