A LOCAL-PATCH BASED MULTI-STAGE ARTIFICIAL-NEURAL-NETWORK TRAINING PROCEDURE AND ITS APPLICATION TO MATERIAL CHARACTERIZATION

2007 ◽  
Vol 04 (03) ◽  
pp. 439-458 ◽  
Author(s):  
YUNHUA LUO ◽  
ARVIND SHAH

A local-patch based multi-stage artificial-neural-network (ANN) training procedure is proposed in this paper, to improve the accuracy of an ANN trained by a backpropagation (BP) algorithm and, at the same time, to reduce the overall training time. In the proposed procedure a conventional one-stage training procedure is split into multiple stages: an initial training stage and subsequent re-training stage(s). In the initial stage the training data are so selected that the trained ANN has adequate ability of generalization, that is, if provided with a set of new input, the ANN can predict the right region where the output is located, but the accuracy of the solution is not necessarily high. In the following re-training stage(s), local patches of training data, either selected from an existing data pool or generated by numerical methods such as finite element method, are used to re-train the ANN to improve the accuracy. Several factors that may have significant effects on the proposed procedure were investigated based on function approximation. As an example of application, the procedure was then used to train an ANN with finite element data to characterize material parameters.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
R. Manjula Devi ◽  
S. Kuppuswami ◽  
R. C. Suganthe

Artificial neural network has been extensively consumed training model for solving pattern recognition tasks. However, training a very huge training data set using complex neural network necessitates excessively high training time. In this correspondence, a new fast Linear Adaptive Skipping Training (LAST) algorithm for training artificial neural network (ANN) is instituted. The core essence of this paper is to ameliorate the training speed of ANN by exhibiting only the input samples that do not categorize perfectly in the previous epoch which dynamically reducing the number of input samples exhibited to the network at every single epoch without affecting the network’s accuracy. Thus decreasing the size of the training set can reduce the training time, thereby ameliorating the training speed. This LAST algorithm also determines how many epochs the particular input sample has to skip depending upon the successful classification of that input sample. This LAST algorithm can be incorporated into any supervised training algorithms. Experimental result shows that the training speed attained by LAST algorithm is preferably higher than that of other conventional training algorithms.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Oded Medina ◽  
Roi Yozevitch ◽  
Nir Shvalb

It is often hard to relate the sensor’s electrical output to the physical scenario when a multidimensional measurement is of interest. An artificial neural network may be a solution. Nevertheless, if the training data set is extracted from a real experimental setup, it can become unreachable in terms of time resources. The same issue arises when the physical measurement is expected to extend across a wide range of values. This paper presents a novel method for overcoming the long training time in a physical experiment set up by bootstrapping a relatively small data set for generating a synthetic data set which can be used for training an artificial neural network. Such a method can be applied to various measurement systems that yield sensor output which combines simultaneous occurrences or wide-range values of physical phenomena of interest. We discuss to which systems our method may be applied. We exemplify our results on three study cases: a seismic sensor array, a linear array of strain gauges, and an optical sensor array. We present the experimental process, its results, and the resulting accuracies.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4242
Author(s):  
Fausto Valencia ◽  
Hugo Arcos ◽  
Franklin Quilumba

The purpose of this research is the evaluation of artificial neural network models in the prediction of stresses in a 400 MVA power transformer winding conductor caused by the circulation of fault currents. The models were compared considering the training, validation, and test data errors’ behavior. Different combinations of hyperparameters were analyzed based on the variation of architectures, optimizers, and activation functions. The data for the process was created from finite element simulations performed in the FEMM software. The design of the Artificial Neural Network was performed using the Keras framework. As a result, a model with one hidden layer was the best suited architecture for the problem at hand, with the optimizer Adam and the activation function ReLU. The final Artificial Neural Network model predictions were compared with the Finite Element Method results, showing good agreement but with a much shorter solution time.


2018 ◽  
Vol 215 ◽  
pp. 01011
Author(s):  
Sitti Amalia

This research proposed to design and implementation system of voice pattern recognition in the form of numbers with offline pronunciation. Artificial intelligent with backpropagation algorithm used on the simulation test. The test has been done to 100 voice files which got from 10 person voices for 10 different numbers. The words are consisting of number 0 to 9. The trial has been done with artificial neural network parameters such as tolerance value and the sum of a neuron. The best result is shown at tolerance value varied and a sum of the neuron is fixed. The percentage of this network training with optimal architecture and network parameter for each training data and new data are 82,2% and 53,3%. Therefore if tolerance value is fixed and a sum of neuron varied gave 82,2% for training data and 54,4% for new data


Author(s):  
Hadjira Maouz ◽  
◽  
Asma Adda ◽  
Salah Hanini ◽  
◽  
...  

The concentration of carbonyl is one of the most important properties contributing to the detection of the thermal aging of polymer ethylene propylene diene monomer (EPDM). In this publication, an artificial neural network (ANN) model was developed to predict concentration of carbenyl during the thermal aging of EPDM using a database consisting of seven input variables. The best fitting training data was obtained with the architecture of (7 inputs neurons, 10 hidden neurons and 1 output neuron). A Levenberg Marquardt learning (LM) algorithm, hyperbolic tangent transfer function were used at the hidden and output layer respectively. The optimal ANN was obtained with a high correlation coefficient R= 0.995 and a very low root mean square error RMSE = 0.0148 mol/l during the generalization phase. The comparison between the experimental and calculated results show that the ANN model is able of predicted the concentration of carbonyl during the thermal aging of ethylene propylene diene monomer


Author(s):  
Rosalia Arum Kumalasanti ◽  

Humans are social beings who depend on social interaction. Social interaction that is often used is communication. Communication is one of the bridges to connect social relations between humans. Communication can be delivered in two ways, namely verbal or nonverbal. Handwriting is an example of nonverbal communication using paper and writing utensils. Each individual's writing has its own uniqueness so that handwriting often becomes the character or characteristic of the author. The handwriting pattern usually becomes a character for the writer so that people who recognize the writing will easily guess the ownership of the related handwriting. However, handwriting is often used by irresponsible people in the form of handwriting falsification. The acts of writing falcification often occur in the workplace or even in the field of education. This is one of the driving factors for creating a reliable system in tracking someone's handwriting based on their ownership. In this study, we will discuss the identification of a person's handwriting based on their ownership. The output of this research is in the form of ID from the author and accuracy in the form of percentage of system reliability in identifying. The results of this study are expected to have a good impact on all parties, in order to minimize plagiarism. Identification of handwriting to be built consists of two main processes, namely the training phase and the testing phase. At the training stage, the handwritten image is subjected to several processes, namely threshold, wavelet conversion, and then will be trained using the Backpropagation Artificial Neural Network. In the testing phase, the process is the same as in the training phase, but at the end of the process, a comparison will be made between the image data that has been stored during training with a comparison image. Backpropagation ANN can work optimally if it is trained using input data that has determined the size, learning rate, parameters, and the number of nodes on the network. It is expected that the offered method can work optimally so that it produces an accurate percentage in order to minimize handwriting falcification.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhen Liu ◽  
Shibo Zhang

Seismic analysis of concrete-filled steel tube (CFST) arch bridge based on finite element method is a time-consuming work. Especially when uncertainty of material and structural parameters are involved, the computational requirements may exceed the computational power of high performance computers. In this paper, a seismic analysis method of CFST arch bridge based on artificial neural network is presented. The ANN is trained by these seismic damage and corresponding sample parameters based on finite element analysis. In order to obtain more efficient training samples, a uniform design method is used to select sample parameters. By comparing the damage probabilities under different seismic intensities, it is found that the damage probabilities of the neural network method and the finite element method are basically the same. The method based on ANN can save a lot of computing time.


Sign in / Sign up

Export Citation Format

Share Document