THE EFFECT OF CERAMIC IN COMBINATION OF TWO SIGMOID FUNCTIONALLY GRADED ROTATING DISKS WITH VARIABLE THICKNESS

2012 ◽  
Vol 09 (02) ◽  
pp. 1240029 ◽  
Author(s):  
M. BAYAT ◽  
B. B. SAHARI ◽  
M. SALEEM

This paper presents elastic solutions of a disk made of functionally graded material (FGM) with variable thickness subjected to rotating load. The material properties are represented by combination of two sigmoid FGM (S-FGM) namely aluminum–ceramic–aluminum and the disk's different thickness profiles are assumed to be represented by power law distributions. Hollow disks are considered and the solutions for the displacements and stresses are given under appropriate boundary conditions. The effects of the material grading index n and the geometry of the disk on the displacements and stresses are investigated. The results are compared with the known results in the literature on metal–ceramic–metal FGMs. Also the solutions are compared S-FGM versus FGM and non FGM and variable thickness versus uniform thickness. It is found that a sigmoid functionally graded disk with concave thickness profile has smaller displacements and stresses compared with concave or linear thickness profile. It is also observed that an S-FGM rotating functionally graded disk with metal–ceramic–metal combination can be more efficient than the one with ceramic–metal or metal–ceramic.

2015 ◽  
Vol 32 (1) ◽  
pp. 35-46 ◽  
Author(s):  
M. Jabbari ◽  
M. Ghannad ◽  
M. Z. Nejad

AbstractIn this paper, a thermoelastic analysis of rotating disks with different thickness profiles made of functionally graded materials (FGMs) subjected to internal pressure is presented. Material properties (except Poisson’s ratio) and disk thickness profile are described by means of two functions namely power and exponential function. A comparative study of thermoelastic analysis is given for material properties and disk thickness profiles. The results of are compared with those obtained by finite element method (FEM) that shows good agreement. The effect of thickness profiles, gradient parameters and angular velocity on the thermoelastic performance of the disk have been studied.


Author(s):  
Tran Trung Thanh ◽  
Tran Van Ke ◽  
Pham Quoc Hoa ◽  
Tran The Van ◽  
Nguyen Thoi Trung

The paper aims to extend the ES-MITC3 element, which is an integration of the edge-based smoothed finite element method (ES-FEM) with the mixed interpolation of tensorial components technique for the three-node triangular element (MITC3 element), for the buckling analysis of the FGM variable-thickness plates subjected to mechanical loads. The proposed ES-MITC3 element is performed to eliminate the shear locking phenomenon and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing the same edge. The numerical results demonstrated that the proposed method is reliable and more accurate than some other published solutions in the literature. The influences of some geometric parameters, material properties on the stability of FGM variable-thickness plates are examined in detail.


2020 ◽  
Vol 70 (3) ◽  
pp. 292-298
Author(s):  
Rajinder Singh ◽  
Ravindra K. Saxena ◽  
Kishore Khanna ◽  
V. K. Gupta

The study compares the steady state creep response of rotating Al-SiC discs having constant, linear, hyperbolic and exponential thickness with different thickness profiles. All the discs are assumed to have equal volume with the same average thickness. The creep behaviour of the disc material is described by threshold stress based law while the yielding is assumed to follow Tresca criterion. The variable thickness disc is observed to have superior creep response, expressed in terms of stresses and strain rates, to a constant thickness disc. Amongst variable thickness discs, the creep response is observed to be superior for linear thickness disc, when the inner thickness of all the discs is kept the same. However, for the same outer thickness, the disc having hyperbolic thickness profile exhibits the best creep response.


Author(s):  
E Ghafoori ◽  
M Asghari

A three-dimensional elasticity solution for the analysis of functionally graded rotating cylinders with variable thickness profile is proposed. The axisymmetric structure has been divided in several divisions in the radial direction. Constant mechanical properties and thickness profile are assumed within each division. The solution is considered for four different thickness profiles, namely constant, linear, concave, and convex. It is shown that the linear, concave, and convex thickness profiles have smaller stress values compared to a constant thickness profile. The effects of various grading indices as well as different boundary conditions, namely solid, free–free hollow and fixed–free hollow structures are discussed. A series of numerical results using zirconia as outer surface ceramic and aluminium as inner surface metal are presented. Parametric study has then been carried out to give a better understanding of how different stress, strain, and displacement components change along radial and axial directions of the rotating structures. Numerical results show that for a given grading index, the structures with a concave thickness profile have the smaller circumferential strain and stress compared to other thickness profiles.


2016 ◽  
Vol 10 (3) ◽  
pp. 207-212
Author(s):  
Szymon Hernik

Abstract The aim of this paper is the numerical analysis of the one of main part of car engine – piston sleeve. The first example is for piston sleeve made of metal matrix composite (MMC) A356R. The second improved material structure is layered. Both of them are comparison to the classical structure of piston sleeve made of Cr-Ni stainless steel. The layered material structure contains the anti-abrasion layer at the inner surface of piston sleeve, where the contact and friction is highest, FGM (functionally graded material) interface and the layer of virgin material on the outer surface made of A356R. The complex thermo-elastic model with Archard's condition as a wear law is proposed. The piston sleeve is modelling as a thin walled cylindrical axisymmetric shell. The coupled between the formulation of thermo-elasticity of cylindrical axisymmetric shell and the Archard’s law with functionally changes of local hardness is proposed.


Sign in / Sign up

Export Citation Format

Share Document