scholarly journals An edge-based smoothed finite element for buckling analysis of functionally graded material variable-thickness plates

Author(s):  
Tran Trung Thanh ◽  
Tran Van Ke ◽  
Pham Quoc Hoa ◽  
Tran The Van ◽  
Nguyen Thoi Trung

The paper aims to extend the ES-MITC3 element, which is an integration of the edge-based smoothed finite element method (ES-FEM) with the mixed interpolation of tensorial components technique for the three-node triangular element (MITC3 element), for the buckling analysis of the FGM variable-thickness plates subjected to mechanical loads. The proposed ES-MITC3 element is performed to eliminate the shear locking phenomenon and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing the same edge. The numerical results demonstrated that the proposed method is reliable and more accurate than some other published solutions in the literature. The influences of some geometric parameters, material properties on the stability of FGM variable-thickness plates are examined in detail.

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Trung Thanh Tran ◽  
Quoc-Hoa Pham ◽  
Trung Nguyen-Thoi

The paper presents the extension of an edge-based smoothed finite element method using three-node triangular elements for dynamic analysis of the functionally graded porous (FGP) plates subjected to moving loads resting on the elastic foundation taking into mass (EFTIM). In this study, the edge-based smoothed technique is integrated with the mixed interpolation of the tensorial component technique for the three-node triangular element (MITC3) to give so-called ES-MITC3, which helps improve significantly the accuracy for the standard MITC3 element. The EFTIM model is formed by adding a mass parameter of foundation into the Winkler–Pasternak foundation model. Two parameters of the FGP materials, the power-law index (k) and the maximum porosity distributions (Ω), take forms of cosine functions. Some numerical results of the proposed method are compared with those of published works to verify the accuracy and reliability. Furthermore, the effects of geometric parameters and materials on forced vibration of the FGP plates resting on the EFTIM are also studied in detail.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 684 ◽  
Author(s):  
Tien Dat Pham ◽  
Quoc Hoa Pham ◽  
Van Duc Phan ◽  
Hoang Nam Nguyen ◽  
Van Thom Do

An edge-based smoothed finite element method (ES-FEM) combined with the mixed interpolation of tensorial components technique for triangular shell element (MITC3), called ES-MITC3, for free vibration analysis of functionally graded shells is investigated in this work. In the formulation of the ES-MITC3, the stiffness matrices are obtained by using the strain-smoothing technique over the smoothing domains that are formed by two adjacent MITC3 triangular shell elements sharing an edge. The strain-smoothing technique can improve significantly the accuracy and convergence of the original MITC3. The material properties of functionally graded shells are assumed to vary through the thickness direction by a power–rule distribution of volume fractions of the constituents. The numerical examples demonstrated that the present ES-MITC3method is free of shear locking and achieves the high accuracy compared to the reference solutions in the literature.


2009 ◽  
Vol 31 (2) ◽  
pp. 75-86
Author(s):  
Nguyen Xuan Hung ◽  
Nguyen Thoi Trung

The paper further develops the edge-based smoothed finite element method (ES-FEM) for analysis of Reissner-Mindlin plates using triangular meshes. The bending and shearing stiffness matrices are obtained using strain smoothing technique over the smoothing domains associated with edges of elements. Transverse shear locking can be avoided with help of the discrete shear gap (DSG) method. The numerical examples show that the present ES-FEM-DSG method obtains very accurate results compared to the exact solution and other existing elements.


Author(s):  
M H Naei ◽  
A Masoumi ◽  
A Shamekhi

The current study presents the buckling analysis of radially-loaded circular plate with variable thickness made of functionally graded material. The boundary conditions of the plate is either simply supported or clamped. The stability equations were obtained using energy method based on Love-Kichhoff hypothesis and Sander's non-linear strain-displacement relation for thin plates. The finite-element method is used to determine the critical buckling load. The results obtained show good agreement with known analytical and numerical data. The effects of thickness variation and Poisson's ratio are investigated by calculating the buckling load. These effects are found not to be the same for simply supported and clamped plates.


Author(s):  
Abazar Shamekhi ◽  
Mohammad H. Naei

This study presents the buckling analysis of radially-loaded circular plate with variable thickness made of functionally-graded material. The boundary conditions of the plate is either simply supported or clamped. The stability equations were obtained using energy method based on Love-Kichhoff hypothesis and Sander’s non-linear strain-displacement relation for thin plates. The finite element method is used to determine the critical buckling load. The results obtained show good agreement with known analytical and numerical data. The effects of thickness variation and Poisson’s ratio are investigated by calculating the buckling load. These effects are found not to be the same for simply supported and clamped plates.


2013 ◽  
Vol 05 (04) ◽  
pp. 1350041 ◽  
Author(s):  
M.N.A. GULSHAN TAJ ◽  
ANUPAM CHAKRABARTI

In the present study, an attempt has been made to present the Co finite element formulation based on third order shear deformation theory for buckling analysis of functionally graded material skew plate under thermo-mechanical environment. Here, prime emphasis has been given to study the influence of skew angle on the buckling behavior of functionally graded plate. Two dissimilar homogenization schemes, namely Mori–Tanaka scheme and Voigt rule of mixture are employed to sketch their influence for the interpretation of data. Temperature-dependent material properties of the constituents of the plate are considered to perform thermal analysis. Numerical examples are solved using different mixture of ceramic and metal plates to generate the new results and relative imperative conclusions are highlighted. The roles played by the different factors like loading condition, volume fraction index, skew angle, boundary condition, aspect ratio, thickness ratio and homogenization schemes on buckling behavior of the FGM skew plates are presented in the form of tables and figures.


2014 ◽  
Vol 11 (06) ◽  
pp. 1350089 ◽  
Author(s):  
SHIZHE FENG ◽  
XIANGYANG CUI ◽  
GUANGYAO LI

In this paper, an edge-based smoothed finite element method (ES-FEM) is further formulated to deal with the thermo-mechanical analysis of composite pressure vessels. In the ES-FEM, the problem domain is first discretized into a set of triangular elements, and the edge-based smoothing domains are further formed along the edges of the triangular meshes. In order to improve the accuracy, the stiffness matrices are calculated using the strain smoothing technique in these smoothing domains. The thermal and mechanical properties are assumed to vary between different layers. The present formulation is straight-forward and no penalty parameters or additional degrees of freedom are used. Several numerical examples are given to demonstrate the effectivity of ES-FEM for thermo-mechanical analysis of composite pressure vessels.


Author(s):  
Chang Kye Lee ◽  
Sundararajan Natarajan

This work presents a linear smoothing scheme over high-order triangular elements in the framework of a cell-based strain smoothed finite element method for two-dimensional nonlinear problems. The main idea behind the proposed linear smoothing scheme for strain-smoothed finite element method (S-FEM) is no subdivision of finite element cells to sub-cells while the classical S-FEM needs sub-cells. Since the linear smoothing function is employed, S-FEM is able to use quadratic triangular or quadrilateral elements. The modified smoothed matrix obtained node-wise is evaluated. In the same manner with the computation of the strain-displacement matrix, the smoothed stiffness matrix and deformation graident are obtained over smoothing domains. A series of benchmark tests are investigated to demonstrate validity and stability of the proposed scheme. The validity and accuracy are confirmed by comparing the obtained numerical results with the standard FEM using 2nd-order triangular element and the exact solutions.


Sign in / Sign up

Export Citation Format

Share Document