ASSESSMENT OF RPIM SHAPE PARAMETERS FOR SOLUTION ACCURACY OF 2D GEOMETRICALLY NONLINEAR PROBLEMS

2013 ◽  
Vol 10 (03) ◽  
pp. 1350003 ◽  
Author(s):  
O. YAVUZ BOZKURT ◽  
BAHATTİN KANBER ◽  
M. ZÜLFÜ AŞIK

This study discussed the effects of shape parameters on the radial point interpolation method (RPIM) accuracy in 2D geometrically nonlinear problems. Four finite deformation problems with compressible Neo-Hookean material are numerically solved with the RPIM algorithm using the multi-quadric (MQ) radial basis function. Both regular and irregular node distributions are used. Their displacements and Cauchy stresses are compared for different values of shape parameters and monomial basis. It is found that the shape parameters proposed for linearly elastic problems (q = 1.03, αc = 4) can still be applicable to 2D geometrically nonlinear problems but careful selections should be made for the calculation of stress. For example, when q is used as 1.75 with irregular node distributions, stresses can be calculated more precisely.

2015 ◽  
Vol 12 (06) ◽  
pp. 1550036
Author(s):  
M. M. Yavuz ◽  
B. Kanber

In this paper, tetrahedral background cells are used in nodal integration of radial point interpolation method (RPIM). The nodal integration is based on Taylor series terms and it is originally applied for the solutions of 2D problems in literature. Therefore, in this study, it is attempted that the tetrahedral integration cells are used in the solution of 3D elasto-static problems. The accuracy is seriously affected by order of Taylor series terms and it is investigated up to fifth order. A methodology is developed for prevention of negative volumes and calculation problems in subdivision of integration cells for each node. Three different case studies are solved with different support domain sizes and shape parameters. The best accuracy is achieved with fourth-order Taylor terms in nodal integration radial point interpolation method (NI-RPIM). [Formula: see text]-value of 3.00 and [Formula: see text] value of 1.03 in radial basis functions give good results in all cases.


2016 ◽  
Vol 9 (1) ◽  
pp. 43-72 ◽  
Author(s):  
Abderrachid Hamrani ◽  
Idir Belaidi ◽  
Eric Monteiro ◽  
Philippe Lorong

AbstractIn order to overcome the possible singularity associated with the Point Interpolation Method (PIM), the Radial Point Interpolation Method (RPIM) was proposed by G. R. Liu. Radial basis functions (RBF) was used in RPIM as basis functions for interpolation. All these radial basis functions include shape parameters. The choice of these shape parameters has been and stays a problematic theme in RBF approximation and interpolation theory. The object of this study is to contribute to the analysis of how these shape parameters affect the accuracy of the radial PIM. The RPIM is studied based on the global Galerkin weak form performed using two integration technics: classical Gaussian integration and the strain smoothing integration scheme. The numerical performance of this method is tested on their behavior on curve fitting, and on three elastic mechanical problems with regular or irregular nodes distributions. A range of recommended shape parameters is obtained from the analysis of different error indexes and also the condition number of the matrix system. All resulting RPIM methods perform very well in term of numerical computation. The Smoothed Radial Point Interpolation Method (SRPIM) shows a higher accuracy, especially in a situation of distorted node scheme.


Author(s):  
ROSS Costa ◽  
J Belinha ◽  
RM Natal Jorge ◽  
DES Rodrigues

Additive manufacturing is an emergent technology, which witnessed a large growth demanded by the consumer market. Despite this growth, the technology needs scientific regulation and guidelines to be reliable and consistent to the point that is feasible to be used as a source of manufactured end-products. One of the processes that has seen the most significant development is the fused deposition modeling, more commonly known as 3D printing. The motivation to better understand this process makes the study of extrusion of materials important. In this work, the radial point interpolation method, a meshless method, is applied to the study of extrusion of viscoplastic materials, using the formulation originally intended for the finite element method, the flow formulation. This formulation is based on the reasoning that solid materials under those conditions behave like non-Newtonian fluids. The time stepped analysis follows the Lagrangian approach taking advantage of the easy remeshing inherent to meshless methods. To validate the newly developed numerical tool, tests are conducted with numerical examples obtained from the literature for the extrusion of aluminum, which is a more common problem. Thus, after the performed validation, the algorithm can easily be adapted to simulate the extrusion of polymers in fused deposition modeling processes.


Author(s):  
N. A. Nascimento ◽  
J. Belinha ◽  
R. M. Natal Jorge ◽  
D. E. S. Rodrigues

Cellular solid materials are progressively becoming more predominant in lightweight structural applications as more technologies realize these materials can be improved in terms of performance, quality control, repeatability and production costs, when allied with fast developing manufacturing technologies such as Additive Manufacturing. In parallel, the rapid advances in computational power and the use of new numerical methods, such as Meshless Methods, in addition to the Finite Element Method (FEM) are highly beneficial and allow for more accurate studies of a wide range of topologies associated with the architecture of cellular solid materials. Since these materials are commonly used as the cores of sandwich panels, in this work, two different topologies were designed — conventional honeycombs and re-entrant honeycombs — for 7 different values of relative density, and tested on the linear-elastic domain, in both in-plane directions, using the Natural Neighbor Radial Point Interpolation Method (NNRPIM), a newly developed meshless method, and the Finite Element Method (FEM) for comparison purposes.


Sign in / Sign up

Export Citation Format

Share Document