wave propagation modeling
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 19)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
J. Antonio Vidal-Villegas ◽  
Carlos I. Huerta-López ◽  
Erik E. Ramírez ◽  
Rogelio Arce-Villa ◽  
Felipe de J. Vega-Guzmán

Abstract We conducted experimental work to explain the large peak ground accelerations observed at the Cerro Prieto volcano in Mexicali Valley, Mexico. Using ambient noise and earthquake data, we compared horizontal-to-vertical spectral ratios (HVSRs) computed for sites on the volcano against those calculated for locations outside it. High-HVSR values (∼11 at ∼2 Hz) were obtained on the top of the volcano at 183 m of altitude, decreasing for sites located at lower elevations. We calculated a median HVSR of ∼1 at 2 Hz from HVSRs computed for nine sites located along an N18°E transect and at an average elevation of ∼25 m. The earlier comparison suggests a relative amplification on the volcano. In addition, we calculated HVSRs from accelerograms generated by 62 earthquakes (2.6≤ML≤5.4; 4.6≤Mw≤7.2) recorded at four locations: two on the volcano (at 194 and 110 m of elevation) and two outside it. These last two sites, located up to 6 km away in a north-northwest and south-southwest direction relative to the volcano, are at an average altitude of 22 m. For the four locations, we also computed the HVSRs from ambient noise data. Although the HVSR results derived from both types of data are slightly different, we also found high HVSRs for the two sites on the volcano and low HVSRs for the two sites outside it, corroborating the relative amplification on the volcano. Using the 1D wave propagation modeling, based on the stiffness matrix method, we modeled the experimental HVSRs to analyze the local site effects. Therefore, we propose that the ground-motion amplification at the Cerro Prieto volcano may be due to a combination of its topography and shallow site effects.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2011
Author(s):  
Mikhail Lytaev ◽  
Eugene Borisov ◽  
Andrei Vladyko

This study is devoted to radio wave propagation modeling in the urban environment. Special attention has been paid to the features of vehicular ad hoc networks (VANETs) and vehicle-to-infrastructure (V2I) communications. For the first time, the three-dimensional bidirectional parabolic equation (PE) method has been applied to the specified problem. Buildings and other obstacles are modeled by impenetrable (perfectly electric conducting) cuboids. A harmonic radiation source with an arbitrary direction pattern may be modeled. Numerical simulation is performed for various propagation scenarios. A comparison with the ray-tracing (RT) method is given. The results of the numerical simulation prove the effectiveness and reliability of the proposed method. Some recommendations for deploying VANETs are obtained based on the numerical results.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. C175-C186 ◽  
Author(s):  
Mohammad Mahdi Abedi

Orthorhombic anisotropy is a modern standard for 3D seismic studies in complex geologic settings. Several seismic data processing methods and wave propagation modeling algorithms in orthorhombic media rely on phase-velocity, group-velocity, and traveltime approximations. The algebraic simplicity of an approximate equation is an important factor in these media because the governing equations are more complicated than transversely isotropic media. To approximate the P-wave kinematics in acoustic orthorhombic media, we have developed a new 3D general functional equation that has a simple rational form. Using the general form, we adopt two versions of rational approximations for the phase velocity, group velocity, and traveltime. The first version uses a simpler functional form and parameter definition within the orthorhombic symmetry planes. The second version is more accurate, using one parameter that is defined out of the symmetry planes. For the phase velocity, we obtain another approximation that is no longer rational but is still algebraically simple, exact for 3D transversely isotropic media, and it is exact within the symmetry planes of orthorhombic media. We find superior accuracy in our approximations compared with previous ones, using numerical studies on multiple moderately anisotropic orthorhombic models. We investigate the effect of the negative anellipticity parameters on the accuracy and find that, in models in which the error of the existing most accurate approximations exceeds 2%, the error of the new approximations remains below 0.2%. The adopted approximations are algebraically simpler and stably more accurate than existing approximations; therefore, they may be considered as attractive alternatives for the existing approximations in many practical applications. We extend the applicability of our approximations by using them to obtain the equations of group direction as a function of phase direction and vice versa, which are useful in wave propagation modeling methods.


Sign in / Sign up

Export Citation Format

Share Document