A Laguerre Approach for the Solutions of Singular Perturbated Differential Equations

2017 ◽  
Vol 14 (04) ◽  
pp. 1750034 ◽  
Author(s):  
Şuayip Yüzbaşı

In this paper, a Laguerre method is presented to solve singularly perturbated two-point boundary value problems. By means of the matrix relations of the Laguerre polynomials and their derivatives, original problem is transformed into a matrix equation. Later, we use collocation points in the matrix equation and thus the considered problem is reduced to a system of linear algebraic equations. The solution of this system gives the coefficients of the desired approximate solution. Also, an error estimation based on the residual function is introduced for the method. The Laguerre polynomial solution is improved by using this error estimation. Finally, error estimation and residual improvement are illustrated by examples and comparisons are given with other methods.

2020 ◽  
Vol 55 (2) ◽  
Author(s):  
Eman Hassan Ouda ◽  
Suha Shihab ◽  
Mohammed Rasheed

In the present paper, the properties of Boubaker orthonormal polynomials are used to construct new Boubaker wavelet orthonormal functions which are continuous on the interval [0, 1). Then, a Boubaker wavelet orthonormal operational matrix of the derivative is obtained with the new general procedure. The matrix elements can be expressed in a simple form that reduces the computational complexity. The collocation method of the Boubaker orthonormal wavelet functions together with the application of the derived operational matrix of the derivative are then utilized to transform the higher-order integro-differential equation into a solution of linear algebraic equations. As a result, the solution of the original problem reduces to the solution of a linear system of algebraic equations and can be sufficiently solved by an approximate technique. The main advantage of the suggested method is that the orthonormality property greatly simplifies the original problem and leads to easy calculation of the coefficients of expansion. Special attention is needed to perform the convergence analysis. The error is analyzed when a sufficiently smooth function is expanded in terms of the Boubaker orthonormal wavelet functions, then an estimation of the upper bound of the error is calculated. The results obtained by the technique in the current work are reported by solving some numerical examples and the accuracy is checked by comparing the results with the exact solution.


2017 ◽  
Vol 10 (07) ◽  
pp. 1750091 ◽  
Author(s):  
Şuayip Yüzbaşi

In this paper, we propose a collocation method to obtain the approximate solutions of a population model and the delay linear Volterra integro-differential equations. The method is based on the shifted Legendre polynomials. By using the required matrix operations and collocation points, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. The matrix equation corresponds to a system of linear algebraic equations. Also, an error estimation method for method and improvement of solutions is presented by using the residual function. Applications of population model and general delay integro-differential equation are given. The obtained results are compared with the known results.


2021 ◽  
Vol 21 (2) ◽  
pp. 395-406
Author(s):  
DENİZ ELMACI ◽  
NURCAN BAYKUŞ SAVAŞANERİL ◽  
FADİME DAL ◽  
MEHMET SEZER

In this study, the first order nonlinear Volterra type integro-differential equations are used in order to identify approximate solutions concerning Euler polynomials of a matrix method based on collocation points. This method converts the mentioned nonlinear integro-differential equation into the matrix equation with the utilization of Euler polynomials along with collocation points. The matrix equation is a system of nonlinear algebraic equations with the unknown Euler coefficients. Additionally, this approach provides analytic solutions, if the exact solutions are polynomials. Furthermore, some illustrative examples are presented with the aid of an error estimation by using the Mean-Value Theorem and residual functions. The obtained results show that the developed method is efficient and simple enough to be applied. And also, convergence of the solutions of the problems were examined. In order to obtain the matrix equations and solutions for the selected problems, code was developed in MATLAB.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Şuayip Yüzbaşı ◽  
Mehmet Sezer

This paper deals with the singularly perturbed delay differential equations under boundary conditions. A numerical approximation based on the exponential functions is proposed to solve the singularly perturbed delay differential equations. By aid of the collocation points and the matrix operations, the suggested scheme converts singularly perturbed problem into a matrix equation, and this matrix equation corresponds to a system of linear algebraic equations. Also, an error analysis technique based on the residual function is introduced for the method. Four examples are considered to demonstrate the performance of the proposed scheme, and the results are discussed.


2021 ◽  
Vol 28 (3) ◽  
pp. 234-237
Author(s):  
Gleb D. Stepanov

This article describes an algorithm for obtaining a non-negative basic solution of a system of linear algebraic equations. This problem, which undoubtedly has an independent interest, in particular, is the most time-consuming part of the famous simplex method for solving linear programming problems.Unlike the artificial basis Orden’s method used in the classical simplex method, the proposed algorithm does not attract artificial variables and economically consumes computational resources.The algorithm consists of two stages, each of which is based on Gaussian exceptions. The first stage coincides with the main part of the Gaussian complete exclusion method, in which the matrix of the system is reduced to the form with an identity submatrix. The second stage is an iterative cycle, at each of the iterations of which, according to some rules, a resolving element is selected, and then a Gaussian elimination step is performed, preserving the matrix structure obtained at the first stage. The cycle ends either when the absence of non-negative solutions is established, or when one of them is found.Two rules for choosing a resolving element are given. The more primitive of them allows for ambiguity of choice and does not exclude looping (but in very rare cases). Use of the second rule ensures that there is no looping.


Author(s):  
Vladimir N. Lutay

The solution of systems of linear algebraic equations, which matrices can be poorly conditioned or singular is considered. As a solution method, the original matrix is decomposed into triangular components by Gauss or Chole-sky with an additional operation, which consists in increasing the small or zero diagonal terms of triangular matrices during the decomposition process. In the first case, the scalar products calculated during decomposition are divided into two positive numbers such that the first is greater than the second, and their sum is equal to the original one. In further operations, the first number replaces the scalar product, as a result of which the value of the diagonal term increases, and the second number is stored and used after the decomposition process is completed to correct the result of calculations. This operation increases the diagonal elements of triangular matrices and prevents the appearance of very small numbers in the Gauss method and a negative root expression in the Cholesky method. If the matrix is singular, then the calculated diagonal element is zero, and an arbitrary positive number is added to it. This allows you to complete the decomposition process and calculate the pseudo-inverse matrix using the Greville method. The results of computational experiments are presented.


1966 ◽  
Vol 10 (01) ◽  
pp. 25-48
Author(s):  
Richard P. Bernicker

A linearized two-dimensional theory is presented for high-speed hydrofoils near the free surface. The "direct" problem (hydrofoil shape specified) is attacked by replacing the actual foil with vortex and source sheets. The resulting integral equation for the strength of the singularity distribution is recast into an infinite set of linear algebraic equations relating the unknown constants in a Glauert-type vorticity expansion to the boundary condition on the foil. The solution is achieved using a matrix inversion technique and it is found that the matrix relating the known and unknown constants is a function of depth of submergence alone. Inversion of this matrix at each depth allows the vorticity constants to be calculated for any arbitrary foil section by matrix multiplication. The inverted matrices have been calculated for several depth-to-chord ratios and are presented herein. Several examples for specific camber and thickness distributions are given, and results indicate significant effects in the force characteristics at depths less than one chord. In particular, thickness effects cause a loss of lift at shallow submergences which may be an appreciable percentage of the total design lift. The second part treats the "indirect" problem of designing a hydrofoil sectional shape at a given depth to achieve a specified pressure loading. Similar to the "direct" problem treated in the first part, integral equations are derived for the camber and thickness functions by replacing the actual foil by vortex and source sheets. The solution is obtained by recasting these equations into an infinite set of linear algebraic equations relating the constants in a series expansion of the foil geometry to the known pressure boundary conditions. The matrix relating the known and unknown constants is, again, a function of the depth of submergence alone, and inversion techniques allow the sectional shape to be determined for arbitrary design pressure distributions. Several examples indicate the procedure and results are presented for the change in sectional shape for a given pressure loading as the depth of submergence of the foil is decreased.


2020 ◽  
Vol 12 (4) ◽  
pp. 517-523
Author(s):  
G. Singh ◽  
I. Singh

In this paper, a collocation method based on Hermite polynomials is presented for the numerical solution of the electric circuit equations arising in many branches of sciences and engineering. By using collocation points and Hermite polynomials, electric circuit equations are transformed into a system of linear algebraic equations with unknown Hermite coefficients. These unknown Hermite coefficients have been computed by solving such algebraic equations. To illustrate the accuracy of the proposed method some numerical examples are presented.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Berna Bülbül ◽  
Mehmet Sezer

We have suggested a numerical approach, which is based on an improved Taylor matrix method, for solving Duffing differential equations. The method is based on the approximation by the truncated Taylor series about center zero. Duffing equation and conditions are transformed into the matrix equations, which corresponds to a system of nonlinear algebraic equations with the unknown coefficients, via collocation points. Combining these matrix equations and then solving the system yield the unknown coefficients of the solution function. Numerical examples are included to demonstrate the validity and the applicability of the technique. The results show the efficiency and the accuracy of the present work. Also, the method can be easily applied to engineering and science problems.


2020 ◽  
Vol 17 (10) ◽  
pp. 2050011
Author(s):  
Şuayip Yüzbaşı ◽  
Gamze Yıldırım

In this study, a method for numerically solving Riccatti type differential equations with functional arguments under the mixed condition is presented. For the method, Legendre polynomials, the solution forms and the required expressions are written in the matrix form and the collocation points are defined. Then, by using the obtained matrix relations and the collocation points, the Riccati problem is reduced to a system of nonlinear algebraic equations. The condition in the problem is written in the matrix form and a new system of the nonlinear algebraic equations is found with the aid of the obtained matrix relation. This system is solved and thus the coefficient matrix is detected. This coefficient matrix is written in the solution form and hence approximate solution is obtained. In addition, by defining the residual function, an error problem is established and approximate solutions which give better numerical results are obtained. To demonstrate that the method is trustworthy and convenient, the presented method and error estimation technique are explicated by numerical examples. Consequently, the numerical results are shown more clearly with the aid of the tables and graphs and also the results are compared with the results of other methods.


Sign in / Sign up

Export Citation Format

Share Document