scholarly journals Boubaker Wavelet Functions for Solving Higher Order Integro-Differential Equations

2020 ◽  
Vol 55 (2) ◽  
Author(s):  
Eman Hassan Ouda ◽  
Suha Shihab ◽  
Mohammed Rasheed

In the present paper, the properties of Boubaker orthonormal polynomials are used to construct new Boubaker wavelet orthonormal functions which are continuous on the interval [0, 1). Then, a Boubaker wavelet orthonormal operational matrix of the derivative is obtained with the new general procedure. The matrix elements can be expressed in a simple form that reduces the computational complexity. The collocation method of the Boubaker orthonormal wavelet functions together with the application of the derived operational matrix of the derivative are then utilized to transform the higher-order integro-differential equation into a solution of linear algebraic equations. As a result, the solution of the original problem reduces to the solution of a linear system of algebraic equations and can be sufficiently solved by an approximate technique. The main advantage of the suggested method is that the orthonormality property greatly simplifies the original problem and leads to easy calculation of the coefficients of expansion. Special attention is needed to perform the convergence analysis. The error is analyzed when a sufficiently smooth function is expanded in terms of the Boubaker orthonormal wavelet functions, then an estimation of the upper bound of the error is calculated. The results obtained by the technique in the current work are reported by solving some numerical examples and the accuracy is checked by comparing the results with the exact solution.

2020 ◽  
Vol 18 (03) ◽  
pp. 2050007
Author(s):  
A. I. Zenchuk

We combine the long-distance quantum state transfer and simple operations with the elements of the transferred (nor perfectly) density matrix. These operations are turning some matrix elements to zero, rearranging the matrix elements and preparing their linear combinations with required coefficients. The basic tool performing these operations is the unitary transformation on the extended receiver. A system of linear algebraic equations can be solved in this way as well. Such operations are numerically simulated on the basis of 42-node spin-1/2 chain with the two-qubit sender and receiver.


2016 ◽  
Vol 09 (04) ◽  
pp. 1650077 ◽  
Author(s):  
Yousef Jafarzadeh ◽  
Bagher Keramati

In this paper, we present the Lagrange polynomial solutions to system of higher-order linear integro-differential Volterra–Fredholm equations (IDVFE). This method transforms the IDVFE into the matrix equations which is converted to a system of linear algebraic equations. Some numerical results are given to illustrate the efficiency of the method.


Author(s):  
S.C. Shiralashetti ◽  
A.B. Deshi

In this paper, numerical solutions of Riccati and fractional Riccati differential equations are obtained by the Haar wavelet collocation method. An operational matrix of integration based on the Haar wavelet is established, and the procedure for applying the matrix to solve these equations. The fundamental idea of Haar wavelet method is to convert the proposed differential equations into a group of non-linear algebraic equations. The accuracy of approximate solution can be further improved by increasing the level of resolution and an error analysis is computed. The examples are given to demonstrate the fast and flexibility of the method. The results obtained are in good agreement with the exact in comparison with existing ones and it is shown that the technique introduced here is robust, easy to apply and is not only enough accurate but also quite stable.


2017 ◽  
Vol 14 (04) ◽  
pp. 1750034 ◽  
Author(s):  
Şuayip Yüzbaşı

In this paper, a Laguerre method is presented to solve singularly perturbated two-point boundary value problems. By means of the matrix relations of the Laguerre polynomials and their derivatives, original problem is transformed into a matrix equation. Later, we use collocation points in the matrix equation and thus the considered problem is reduced to a system of linear algebraic equations. The solution of this system gives the coefficients of the desired approximate solution. Also, an error estimation based on the residual function is introduced for the method. The Laguerre polynomial solution is improved by using this error estimation. Finally, error estimation and residual improvement are illustrated by examples and comparisons are given with other methods.


2015 ◽  
Vol 4 (3) ◽  
pp. 420 ◽  
Author(s):  
Behrooz Basirat ◽  
Mohammad Amin Shahdadi

<p>The aim of this article is to present an efficient numerical procedure for solving Lane-Emden type equations. We present two practical matrix method for solving Lane-Emden type equations with mixed conditions by Bernstein polynomials operational matrices (BPOMs) on interval [<em>a; b</em>]. This methods transforms Lane-Emden type equations and the given conditions into matrix equation which corresponds to a system of linear algebraic equations. We also give some numerical examples to demonstrate the efficiency and validity of the operational matrices for solving Lane-Emden type equations (LEEs).</p>


2021 ◽  
Vol 28 (3) ◽  
pp. 234-237
Author(s):  
Gleb D. Stepanov

This article describes an algorithm for obtaining a non-negative basic solution of a system of linear algebraic equations. This problem, which undoubtedly has an independent interest, in particular, is the most time-consuming part of the famous simplex method for solving linear programming problems.Unlike the artificial basis Orden’s method used in the classical simplex method, the proposed algorithm does not attract artificial variables and economically consumes computational resources.The algorithm consists of two stages, each of which is based on Gaussian exceptions. The first stage coincides with the main part of the Gaussian complete exclusion method, in which the matrix of the system is reduced to the form with an identity submatrix. The second stage is an iterative cycle, at each of the iterations of which, according to some rules, a resolving element is selected, and then a Gaussian elimination step is performed, preserving the matrix structure obtained at the first stage. The cycle ends either when the absence of non-negative solutions is established, or when one of them is found.Two rules for choosing a resolving element are given. The more primitive of them allows for ambiguity of choice and does not exclude looping (but in very rare cases). Use of the second rule ensures that there is no looping.


Author(s):  
Vladimir N. Lutay

The solution of systems of linear algebraic equations, which matrices can be poorly conditioned or singular is considered. As a solution method, the original matrix is decomposed into triangular components by Gauss or Chole-sky with an additional operation, which consists in increasing the small or zero diagonal terms of triangular matrices during the decomposition process. In the first case, the scalar products calculated during decomposition are divided into two positive numbers such that the first is greater than the second, and their sum is equal to the original one. In further operations, the first number replaces the scalar product, as a result of which the value of the diagonal term increases, and the second number is stored and used after the decomposition process is completed to correct the result of calculations. This operation increases the diagonal elements of triangular matrices and prevents the appearance of very small numbers in the Gauss method and a negative root expression in the Cholesky method. If the matrix is singular, then the calculated diagonal element is zero, and an arbitrary positive number is added to it. This allows you to complete the decomposition process and calculate the pseudo-inverse matrix using the Greville method. The results of computational experiments are presented.


1966 ◽  
Vol 10 (01) ◽  
pp. 25-48
Author(s):  
Richard P. Bernicker

A linearized two-dimensional theory is presented for high-speed hydrofoils near the free surface. The "direct" problem (hydrofoil shape specified) is attacked by replacing the actual foil with vortex and source sheets. The resulting integral equation for the strength of the singularity distribution is recast into an infinite set of linear algebraic equations relating the unknown constants in a Glauert-type vorticity expansion to the boundary condition on the foil. The solution is achieved using a matrix inversion technique and it is found that the matrix relating the known and unknown constants is a function of depth of submergence alone. Inversion of this matrix at each depth allows the vorticity constants to be calculated for any arbitrary foil section by matrix multiplication. The inverted matrices have been calculated for several depth-to-chord ratios and are presented herein. Several examples for specific camber and thickness distributions are given, and results indicate significant effects in the force characteristics at depths less than one chord. In particular, thickness effects cause a loss of lift at shallow submergences which may be an appreciable percentage of the total design lift. The second part treats the "indirect" problem of designing a hydrofoil sectional shape at a given depth to achieve a specified pressure loading. Similar to the "direct" problem treated in the first part, integral equations are derived for the camber and thickness functions by replacing the actual foil by vortex and source sheets. The solution is obtained by recasting these equations into an infinite set of linear algebraic equations relating the constants in a series expansion of the foil geometry to the known pressure boundary conditions. The matrix relating the known and unknown constants is, again, a function of the depth of submergence alone, and inversion techniques allow the sectional shape to be determined for arbitrary design pressure distributions. Several examples indicate the procedure and results are presented for the change in sectional shape for a given pressure loading as the depth of submergence of the foil is decreased.


Author(s):  
S. Singh ◽  
S. Saha Ray

In this paper, the numerical solutions of multi-dimensional stochastic Itô–Volterra integral equations have been obtained by second kind Chebyshev wavelets. The second kind Chebyshev wavelets are orthonormal and have compact support on [Formula: see text]. The block pulse functions and their relations to second kind Chebyshev wavelets are employed to derive a general procedure for forming stochastic operational matrix of second kind Chebyshev wavelets. The system of integral equations has been reduced to a system of nonlinear algebraic equations and solved for obtaining the numerical solutions. Convergence and error analysis of the proposed method are also discussed. Furthermore, some examples have been discussed to establish the accuracy and efficiency of the proposed scheme.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Qingxue Huang ◽  
Fuqiang Zhao ◽  
Jiaquan Xie ◽  
Lifeng Ma ◽  
Jianmei Wang ◽  
...  

In this paper, a robust, effective, and accurate numerical approach is proposed to obtain the numerical solution of fractional differential equations. The principal characteristic of the approach is the new orthogonal functions based on shifted Legendre polynomials to the fractional calculus. Also the fractional differential operational matrix is driven. Then the matrix with the Tau method is utilized to transform this problem into a system of linear algebraic equations. By solving the linear algebraic equations, the numerical solution is obtained. The approach is tested via some examples. It is shown that the FLF yields better results. Finally, error analysis shows that the algorithm is convergent.


Sign in / Sign up

Export Citation Format

Share Document