ICCM2016: The Implementation of Two-Dimensional Multi-Block Lattice Boltzmann Method on GPU

2019 ◽  
Vol 16 (05) ◽  
pp. 1840002 ◽  
Author(s):  
Ya Zhang ◽  
Guang Pan ◽  
Qiaogao Huang

A straightforward implementation of the Multi-Block Lattice Boltzmann Method (MB-LBM) on a Graphics Processing Unit (GPU) is presented to accelerate the simulation of fluid flows in two-dimensional geometries. The algorithm is measured in terms of both accuracy and efficiency with the benchmark cases of the lid-driven cavity flow and the flow past a circular cylinder, and satisfactory results are obtained. The results show that the performance on GPU becomes even better with the amount of data increasing. Moreover, the arrangement of the computational domain has a significant effect on the efficiency. These results demonstrate the great potential of GPU on the MB-LBM, especially when dealing with massive data.

2019 ◽  
Author(s):  
Henrik Asmuth ◽  
Hugo Olivares-Espinosa ◽  
Stefan Ivanell

Abstract. The presented work investigates the potential of large-eddy simulations (LES) of wind turbine wakes using the cumulant lattice Boltzmann method (CLBM). The wind turbine is represented by the actuator line model (ALM) that is implemented in a GPU-accelerated (Graphics Processing Unit) lattice Boltzmann framework. The implementation is validated and discussed by means of a code-to-code comparison to an established finite-volume Navier-Stokes solver. To this end, the ALM is subjected to a uniform laminar inflow while a standard Smagorinsky sub-grid scale model is employed in both numerical approaches. The comparison shows a good agreement in terms of the blade loads and near-wake characteristics. The main differences are found in the point of laminar-turbulent transition of the wake and the resulting far-wake. In line with other studies these differences can be attributed to the different orders of accuracy of the two methods. In a second part the possibilities of implicit LES with the CLBM are investigated using a limiter applied to the third-order cumulants in the scheme's collision operator. The study shows that the limiter generally ensures numerical stability. Nevertheless, a universal tuning approach for the limiter appears to be required, especially for perturbation-sensitive transition studies. In summary, the range of discussed cases outline the general feasibility of wind turbine simulations using the CLBM. In addition, it highlights the potential of GPU-accelerated LBM implementations to significantly speed up LES in the field of wind energy.


Author(s):  
S.U. Islam ◽  
Naqib Ullah ◽  
Chao Ying Zhou

In this study the two-dimensional flow over a square cylinder placed in a parallel plates is simulated numerically by using lattice Boltzmann method (LBM) at low Reynolds numbers. Both the plates are obstructed by solid rectangular blocks of variable length. The fluid was allowed to flow in a parallel plates for Reynolds number (Re) from 75 to 150, and blockage ratio (g*) ranges from 1 to 3. The numerical investigation does not simply yield the predictable primary region of recirculating flow connected to the obstructions, it also shows supplementary regions of the flow downstream of the single cylinder placed in a computational domain. These supplementary separation zones were not already described in the research. The numerical analysis shows that the downstream flow of obstructions and single cylinder remained two dimensional for Re varied from75 to 150. Results available in previous research, are reported and compared with both of the available experimental and numerical results for code validation with single cylinder. Furthermore the effects of various Re and blockage ratio on the lift forces and drag coefficient is analyzed. Under these circumstances, good agreement between experimental and numerical results are obtained. The hydrodynamic forces of the cylinder are strongly influenced by the spacing ratios.


2016 ◽  
Vol 12 (2) ◽  
pp. 122-127
Author(s):  
Juraj Mužík

Abstract A Lattice Boltzmann method is used to analyse incompressible fluid flow in a two-dimensional cavity and flow in the channel past cylindrical obstacle. The method solves the Boltzmann’s transport equation using simple computational grid - lattice. With the proper choice of the collision operator, the Boltzmann’s equation can be converted into incompressible Navier-Stokes equation. Lid-driven cavity benchmark case for various Reynolds numbers and flow past cylinder is presented in the article. The method produces stable solutions with results comparable to those in literature and is very easy to implement.


2020 ◽  
Vol 5 (2) ◽  
pp. 623-645 ◽  
Author(s):  
Henrik Asmuth ◽  
Hugo Olivares-Espinosa ◽  
Stefan Ivanell

Abstract. The high computational demand of large-eddy simulations (LESs) remains the biggest obstacle for a wider applicability of the method in the field of wind energy. Recent progress of GPU-based (graphics processing unit) lattice Boltzmann frameworks provides significant performance gains alleviating such constraints. The presented work investigates the potential of LES of wind turbine wakes using the cumulant lattice Boltzmann method (CLBM). The wind turbine is represented by the actuator line model (ALM). The implementation is validated and discussed by means of a code-to-code comparison to an established finite-volume Navier–Stokes solver. To this end, the ALM is subjected to both laminar and turbulent inflow while a standard Smagorinsky sub-grid-scale model is employed in the two numerical approaches. The resulting wake characteristics are discussed in terms of the first- and second-order statistics as well the spectra of the turbulence kinetic energy. The near-wake characteristics in laminar inflow are shown to match closely with differences of less than 3 % in the wake deficit. Larger discrepancies are found in the far wake and relate to differences in the point of the laminar-turbulent transition of the wake. In line with other studies, these differences can be attributed to the different orders of accuracy of the two methods. Consistently better agreement is found in turbulent inflow due to the lower impact of the numerical scheme on the wake transition. In summary, the study outlines the feasibility of wind turbine simulations using the CLBM and further validates the presented set-up. Furthermore, it highlights the computational potential of GPU-based LBM implementations for wind energy applications. For the presented cases, near-real-time performance was achieved using a single, off-the-shelf GPU on a local workstation.


Sign in / Sign up

Export Citation Format

Share Document