Numerical analysis of blockage effects on the flow between parallel plates by using Lattice Boltzmann method

Author(s):  
S.U. Islam ◽  
Naqib Ullah ◽  
Chao Ying Zhou

In this study the two-dimensional flow over a square cylinder placed in a parallel plates is simulated numerically by using lattice Boltzmann method (LBM) at low Reynolds numbers. Both the plates are obstructed by solid rectangular blocks of variable length. The fluid was allowed to flow in a parallel plates for Reynolds number (Re) from 75 to 150, and blockage ratio (g*) ranges from 1 to 3. The numerical investigation does not simply yield the predictable primary region of recirculating flow connected to the obstructions, it also shows supplementary regions of the flow downstream of the single cylinder placed in a computational domain. These supplementary separation zones were not already described in the research. The numerical analysis shows that the downstream flow of obstructions and single cylinder remained two dimensional for Re varied from75 to 150. Results available in previous research, are reported and compared with both of the available experimental and numerical results for code validation with single cylinder. Furthermore the effects of various Re and blockage ratio on the lift forces and drag coefficient is analyzed. Under these circumstances, good agreement between experimental and numerical results are obtained. The hydrodynamic forces of the cylinder are strongly influenced by the spacing ratios.

2006 ◽  
Vol 22 (1) ◽  
pp. 35-42 ◽  
Author(s):  
J.-S. Wu ◽  
Y.-L. Shao

AbstractThe flows past a square cylinder in a channel are simulated using the multi-relaxation-time (MRT) model in the parallel lattice Boltzmann BGK method (LBGK). Reynolds numbers of the flow are in the range of 100 ∼ 1,850 with blockage ratio, 1/6, of cylinder height to channel height, in which the single-relaxation-time (SRT) scheme is not able to converge at higher Reynolds numbers. Computed results are compared with those obtained using the SRT scheme where it can converge. In addition, computed Strouhal numbers compare reasonably well with the numerical results of Davis (1984).


2019 ◽  
Vol 16 (05) ◽  
pp. 1840002 ◽  
Author(s):  
Ya Zhang ◽  
Guang Pan ◽  
Qiaogao Huang

A straightforward implementation of the Multi-Block Lattice Boltzmann Method (MB-LBM) on a Graphics Processing Unit (GPU) is presented to accelerate the simulation of fluid flows in two-dimensional geometries. The algorithm is measured in terms of both accuracy and efficiency with the benchmark cases of the lid-driven cavity flow and the flow past a circular cylinder, and satisfactory results are obtained. The results show that the performance on GPU becomes even better with the amount of data increasing. Moreover, the arrangement of the computational domain has a significant effect on the efficiency. These results demonstrate the great potential of GPU on the MB-LBM, especially when dealing with massive data.


2013 ◽  
Vol 24 (09) ◽  
pp. 1350060 ◽  
Author(s):  
M. NAZARI ◽  
M. H. KAYHANI ◽  
R. MOHEBBI

The main goal of the present study is to investigate the heat transfer enhancement in a channel partially filled with an anisotropic porous block (Porous Foam) using the lattice Boltzmann method (LBM). Combined pore level simulation of flow and heat transfer is performed for a 2D channel which is partially filled with square obstacles in both ordered and random arrangements by LBM which is not studied completely in the literature. The effect of the Reynolds number, different arrangements of obstacles, blockage ratio and porosity on the velocity and temperature profiles inside the porous region are studied. The local and averaged Nusselt numbers on the channel walls along with the respective confidence interval and comparison between results of regular and random arrangements are presented for the first time. For constant porosity and block size, the maximum value of averaged Nusselt number in the porous block is obtained in the case of random arrangement of obstacles. Also, by decreasing the porosity, the value of averaged Nusselt number is increased. Heat transfer to the working fluids increases significantly by increasing the blockage ratio. Several blockage ratios with different arrangements are checked to obtain a correlation for the Nusselt number.


2015 ◽  
Vol 25 (5) ◽  
pp. 1214-1230 ◽  
Author(s):  
Tao Sun ◽  
Weizhong Li ◽  
Bo Dong

Purpose – The purpose of this paper is to test the feasibility of lattice Boltzmann method (LBM) for numerical simulation of nucleate boiling and transition boiling. In addition, the processes of nucleate and transition boiling on vertical wall are simulated. The heat transfer mechanism is discussed based on the evolution of temperature field. Design/methodology/approach – In this paper, nucleate boiling and transition boiling are numerically investigated by LBM. A lattice Boltzmann (LB) multiphase model combining with a LB thermal model is used to predict the phase-change process. Findings – Numerical results are in good agreement with existing experimental results. Numerical results confirm the feasibility of the hybrid LBM for direct simulations of nucleate and transition boiling. The data exhibit correct parametric dependencies of bubble departure diameter compared with experimental correlation and relevant references. Research limitations/implications – All the simulations are performed in two-dimensions in this paper. In the future work, the boiling process will be simulated in three-dimensional. Practical implications – This study demonstrated a potential model that can be applied to the investigation of phase change heat transfer, which is one of the effective techniques for enhance the heat transfer in engineering. The numerical results can be considered as a basic work or a reference for generalizing LB method in the practical application about nucleate boiling and transition boiling. Originality/value – The hybrid LBM is first used for simulation of nucleate and transition boiling on vertical surface. Heat transfer mechanism during boiling is discussed based on the numerical results.


2003 ◽  
Vol 17 (01n02) ◽  
pp. 183-187 ◽  
Author(s):  
G. H. TANG ◽  
W. Q. TAO ◽  
Y. L. HE

Forced convective flow and heat transfer between two parallel plates are studied using the lattice Boltzmann method (LBM) in this paper. Three kinds of thermal boundary conditions at the top and bottom plates are studied. The velocity field is simulated using density distribution function while a separate internal energy distribution function is introduced to simulate the temperature field. The results agree well with data from traditional finite volume method (FVM) and analytical solutions. The present work indicates that LBM may be developed as a promising method for predicting convective heat transfer because of its many inherent advantages.


2021 ◽  
pp. 149-149
Author(s):  
Gaojie Liang ◽  
Lijun Liu ◽  
Haiqian Zhao ◽  
Cong Li ◽  
Nandi Zhang

In this study, droplet nucleation and jumping on the conical microstructure surface is simulated using the Lattice Boltzmann Method (LBM). The nucleation and jumping laws of the droplet on the surface are summarized. The numerical results suggest that the height and the gap of the conical microstructure exhibit a significant influence on the nucleation position of the droplet. When the ratio of height to the gap of the microstructure(H/D) is small, the droplet tends to nucleate at the bottom of the structure. Otherwise, the droplet tends to nucleate towards the side of the structure. The droplet grown in the side nucleation mode possesses better hydrophobicity than that of the droplet grown in the bottom nucleation mode and the droplet jumping becomes easier. Apart from the coalescence of the droplets jumping out of the surface, jumping of individual droplets may also occur under certain conditions. The ratio of the clearance to the width of the conical microstructure(D/F) depends on the jumping mode of the droplet. The simulation results indicate that when the D/F ratio is greater than 1.2, the coalescence jump of droplets is likely to occur. On the contrary, the individual jump of droplets is easy to occur.


2003 ◽  
Vol 17 (01n02) ◽  
pp. 139-143
Author(s):  
GÁBOR HÁZI ◽  
ISTVÁN FARKAS

In this paper, we present a numerical study of the Jeffery-Hammel problem using the lattice-Boltzmann method. We study three situations: pure inflow, pure outflow, and outflow with backflow. We demonstrate that the lattice-Boltzmann method gives not only qualitatively but also quantitatively accurate solutions for this problem. From the point of view of stability of the flow, the recent results of bifurcation theory are also briefly considered from the viewpoint of our numerical results.


Sign in / Sign up

Export Citation Format

Share Document