Three-Dimensional Cartesian Grid Method for the Simulations of Flows with Shock Waves in the Domains with Varying Boundaries

Author(s):  
V. V. Elesin ◽  
D. A. Sidorenko ◽  
P. S. Utkin

This paper is devoted to the development and quantitative evaluation of the properties of the numerical algorithm of the Cartesian grid method for three-dimensional (3D) simulation of shock-wave propagation in areas of varying shape. The detailed description of the algorithm is presented. The algorithm is relatively simple to implement and does not require solving the problem of determination of the shape of the body’s boundary intersection with regular computational cell. The accuracy of the algorithm is demonstrated by comparing the simulated and experimental data in the problems of the interaction of a shock wave (SW) with a nonmoving sphere and a moving particle.

Author(s):  
В.В. Елесин ◽  
Д.А. Сидоренко ◽  
П.С. Уткин

Статья посвящена разработке и количественной оценке свойств вычислительного алгоритма метода декартовых сеток для трехмерного математического моделирования распространения ударных волн в областях сложной изменяющейся формы. Представлено подробное описание вычислительного алгоритма, ключевым элементом которого является определение численного потока через грани, по которым внутренние, регулярные ячейки расчетной области соседствуют с внешними, пересекаемыми границами тел ячейками. Работоспособность алгоритма продемонстрирована в результате сравнения рассчитанных и экспериментальных данных в задачах о взаимодействии ударной волны с неподвижной сферой и подвижной частицей. This paper is devoted to the development and quantitative estimation of a numerical algorithm based on the Cartesian grid method for the threedimensional mathematical simulation of shock wave propagation in domains of complex varying shapes. A detailed description of the numerical algorithm is presented. Its key element is the specification of numerical fluxes through the edges that are common for the inner regular cells of the computational domain and the outer cells intersected by the boundaries of the bodies. The efficiency of the algorithm is shown by comparing the numerical and experimental data in the problems of interaction of a shock wave with a fixed sphere and a moving particle.


Author(s):  
Д.А. Сидоренко ◽  
П.С. Уткин

Статья посвящена разработке, программной реализации и количественной оценке свойств вычислительного алгоритма метода декартовых сеток для математического моделирования распространения ударных волн в областях сложной формы с криволинейными границами. Представлено подробное описание вычислительного алгоритма, основанного на методе "h-ячеек''. Работоспособность алгоритма продемонстрирована на задачах о регулярном и простом маховском отражении ударной волны от клина, а также о взаимодействии ударной волны с цилиндром. This paper is devoted to the development, software implementation, and quantitative estimation of a numerical algorithm based on the Cartesian grid method for the mathematical modeling of shock wave propagation in domains of complex shape with curvilinear boundaries. A detailed description of an algorithm based on the method of ``h-boxes'' is given. The efficiency of the algorithm is analyzed on the problems of regular and single Mach reflection of a shock wave from a wedge as well as on the problem of shock wave/cylinder interaction.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 171
Author(s):  
Kyung-Kyu Yang ◽  
Beom-Soo Kim ◽  
Yonghwan Kim ◽  
Masashi Kashiwagi ◽  
Hidetsugu Iwashita

This study deals with wave-induced unsteady pressure on a ship moving with a constant forward speed in regular head waves. Two different numerical methods are applied to solve wave–ship interaction problems: a Rankine panel method which adopts velocity potential, and a Cartesian-grid method which solves the momentum and mass conservation equations under the assumption of inviscid and incompressible fluids. Before comparing l1ocal pressure distributions, the computational methods are validated for global quantities, such as ship motion responses and added resistance, by comparison with available experimental data. Then, the computational results and experimental data are compared for hydrodynamic pressure, particularly focusing on the magnitude of the first-harmonic component in different sections and vertical locations. Furthermore, the Cartesian-grid method is used to simulate the various wave-amplitude conditions, and the characteristics of the zeroth-, first-, and second-harmonic components of wave-induced pressure are investigated. The nonlinearity of pressure distribution is observed mostly from the pressure near the still-water-level of the ship bow and the normalized first-harmonic component of wave-induced pressure decreases as the wave steepness increases. Lastly, to understand the local characteristics of wave-induced unsteady pressure, the time-averaged added pressure and added local force are analyzed. It is found that the major contribution of the time-averaged added local force that occurs around the ship stem above the design waterline.


Sign in / Sign up

Export Citation Format

Share Document