PROCESS MANAGEMENT IN HIGH TECH NEW ZEALAND FIRMS

2008 ◽  
Vol 05 (03) ◽  
pp. 259-278 ◽  
Author(s):  
LINCOLN WOOD ◽  
QIANG LU

There are three distinct functions in the product realization chain — product design, process design, and process execution; thus there are two interfaces (product design — process design; process design — process execution) rather than one (product-manufacturing). Case studies of four organizations manufacturing high-tech products in New Zealand are explored to study the organization of process design functions and success strategies. Similarities in structuring, relationships between functional groups, and the methods for product and process design implementation are investigated. De-coupling of process design functions occurs best with high volume production with stable process technology — an infrequent situation with high-tech NZ manufacturers.

Author(s):  
Arsalan Safari

In this chapter, a systematic and practical design process and methodology is presented and applied to design a new high- technology product: a litter-collecting robot. Although considerable theoretical and practical models have been developed in product design and development, there are still limited effective models on the practical design process on a detailed level. This chapter elaborates on recent relevant research in the design methodology field and try to improve the details of product design process and apply it to a litter-collecting robot design. The detailed and practical approach demonstrated on the design of a high- tech product in this paper, can be applied effectively to the design process of industrial products.


2019 ◽  
pp. 218-246
Author(s):  
Arsalan Safari

In this chapter, a systematic and practical design process and methodology is presented and applied to design a new high- technology product: a litter-collecting robot. Although considerable theoretical and practical models have been developed in product design and development, there are still limited effective models on the practical design process on a detailed level. This chapter elaborates on recent relevant research in the design methodology field and try to improve the details of product design process and apply it to a litter-collecting robot design. The detailed and practical approach demonstrated on the design of a high- tech product in this paper, can be applied effectively to the design process of industrial products.


Author(s):  
Prakash C. R. J. Naidu ◽  
Kshirsagar C. J. Naidu

This paper introduces a new approach named Design for Patentability (DFP) and presents the preliminary formulation of a formal methodology to attempt consideration of patentability aspects during the early stages of design including conceptual design and initial implementation of detailed design and manufacturing. Design for Automation (DFAM) approach formulated earlier by the first author based on Axiomatic Design Theory originated by Suh et. al. at MIT is adapted, suitably modified and customized for inclusion of patentability aspects such as anticipation, functionality, utility, and obviousness. Highlighting the complexity in incorporation of legal aspects in an engineering methodology, the paper presents the possibilities of improving the patentability of a design by a systematic and considered approach. The proposed methodology introduces a Patentability Evaluation phase in-between the Product Design, Process Design and Automation System Design phases of DFAM. The paper reviews mapping of parameters between different domains, namely, Functional Requirements Domain, Design Parameters Domain, Process Requirements Domain, and Design Automation Parameters Domain encompassed in the DFAM methodology and includes Patentability Parameters Domain in parallel to the last three domains to enable possible consideration of patentability aspects during Product Design, Process Design, and Automation System Design. Further, the paper briefly discusses the relevance of the Information Axiom of the Axiomatic Design Theory in the context of preparation of preliminary drafts of invention disclosure and potential claims for perusal by patent agents or attorneys. The approach reported in the paper is expected to have broad applications in the growing field of innovation based entrepreneurship in which design for patentability is an essential requirement for success of a business venture.


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Qian Hui ◽  
Yan Li ◽  
Ye Tao ◽  
Hongwei Liu

AbstractA design problem with deficient information is generally described as wicked or ill-defined. The information insufficiency leaves designers with loose settings, free environments, and a lack of strict boundaries, which provides them with more opportunities to facilitate innovation. Therefore, to capture the opportunity behind the uncertainty of a design problem, this study models an innovative design as a composite solving process, where the problem is clarified and resolved from fuzziness to satisfying solutions by interplay among design problems, knowledge, and solutions. Additionally, a triple-helix structured model for the innovative product design process is proposed based on the co-evolution of the problem, solution, and knowledge spaces, to provide designers with a distinct design strategy and method for innovative design. The three spaces interact and co-evolve through iterative mappings, including problem structuring, knowledge expansion, and solution generation. The mappings carry the information processing and decision-making activities of the design, and create the path to satisfying solutions. Finally, a case study of a reactor coolant flow distribution device is presented to demonstrate the practicability of this model and the method for innovative product design.


2013 ◽  
Vol 712-715 ◽  
pp. 2888-2893
Author(s):  
Hai Qiang Liu ◽  
Ming Lv

In order to realize information sharing and interchange of complex product multidisciplinary collaborative design (MCD) design process and resources. The Process integrated system control of product multidisciplinary collaborative design was analyzed firstly in this paper, then design process of complex product for supporting multidisciplinary collaborative was introduced, a detailed description is given of the organization structure and modeling process of MCD-oriented Integration of Product Design Meta-model ; and concrete implement process of process integrated system control method was introduced to effectively realize information sharing and interchange between product design process and resources.


2008 ◽  
Vol 392-394 ◽  
pp. 543-550 ◽  
Author(s):  
Hun Guo ◽  
Guo Xing Tang ◽  
Dun Wen Zuo ◽  
T.J. Liu ◽  
W.D. Jin

Design reuse is the application of past designs knowledge and successful experience to current design process and it is a significant method for rapid design. A knowledge-reuse-based rapid product design model is proposed and a three-factor product design iterative process model is studied. Finally, it is applied successfully in the rapid product design of construction machinery combining with the requirement of the construct machinery product design.


Sign in / Sign up

Export Citation Format

Share Document