scholarly journals Non-inertial frames in Minkowski space-time, accelerated either mathematical or dynamical observers and comments on non-inertial relativistic quantum mechanics

2014 ◽  
Vol 11 (10) ◽  
pp. 1450086 ◽  
Author(s):  
Horace W. Crater ◽  
Luca Lusanna

After a review of the existing theory of non-inertial frames and mathematical observers in Minkowski space-time we give the explicit expression of a family of such frames obtained from the inertial ones by means of point-dependent Lorentz transformations as suggested by the locality principle. These non-inertial frames have non-Euclidean 3-spaces and contain the differentially rotating ones in Euclidean 3-spaces as a subcase. Then we discuss how to replace mathematical accelerated observers with dynamical ones (their world-lines belong to interacting particles in an isolated system) and how to define Unruh–DeWitt detectors without using mathematical Rindler uniformly accelerated observers. Also some comments are done on the transition from relativistic classical mechanics to relativistic quantum mechanics in non-inertial frames.

2007 ◽  
Vol 22 (32) ◽  
pp. 6243-6251 ◽  
Author(s):  
HRVOJE NIKOLIĆ

The conserved probability densities (attributed to the conserved currents derived from relativistic wave equations) should be nonnegative and the integral of them over an entire hypersurface should be equal to one. To satisfy these requirements in a covariant manner, the foliation of space–time must be such that each integral curve of the current crosses each hypersurface of the foliation once and only once. In some cases, it is necessary to use hypersurfaces that are not spacelike everywhere. The generalization to the many-particle case is also possible.


The steady development of the quantum theory that has taken place during the present century was made possible only by continual reference to the Correspondence Principle of Bohr, according to which, classical theory can give valuable information about quantum phenomena in spite of the essential differences in the fundamental ideas of the two theories. A masterful advance was made by Heisenberg in 1925, who showed how equations of classical physics could be taken over in a formal way and made to apply to quantities of importance in quantum theory, thereby establishing the Correspondence Principle on a quantitative basis and laying the foundations of the new Quantum Mechanics. Heisenberg’s scheme was found to fit wonderfully well with the Hamiltonian theory of classical mechanics and enabled one to apply to quantum theory all the information that classical theory supplies, in so far as this information is consistent with the Hamiltonian form. Thus one was able to build up a satisfactory quantum mechanics for dealing with any dynamical system composed of interacting particles, provided the interaction could be expressed by means of an energy term to be added to the Hamiltonian function. This does not exhaust the sphere of usefulness of the classical theory. Classical electrodynamics, in its accurate (restricted) relativistic form, teaches us that the idea of an interaction energy between particles is only an approxi­mation and should be replaced by the idea of each particle emitting waves which travel outward with a finite velocity and influence the other particles in passing over them. We must find a way of taking over this new information into the quantum theory and must set up a relativistic quantum mechanics, before we can dispense with the Correspondence Principle.


1989 ◽  
Vol 04 (17) ◽  
pp. 4449-4467 ◽  
Author(s):  
PRATUL BANDYOPADHYAY

It is shown here that the holomorphic quantum mechanics in a complexified Minkowski space-time helps us to study the geometrical feature of the internal space of a particle and its relevance with conformal geometry. It is noted that the conformal reflection can be depicted in the formalism of an internal helicity which takes the value [Formula: see text] and [Formula: see text] for the particle and antiparticle state. This again can be described in the framework of holomorphic quantum mechanics in terms of the half-orbital angular momentum of a constituent in an anisotropic space in the sense of Minkowski space-time with a fixed lz value for the particle and antiparticle configuration when a composite system is considered. A massive or massless spinor moving with such characteristic in the configuration of a composite system can be depicted as a Cartan semispinor and behaves as a twistor. The doublet of such spinors with opposite helicities represent an eight-component conformal spinor. The internal symmetry group SU(3) for a composite system of hadrons can then be realized from the reflection group. This formalism reveals the microlocal region of a complexified Minkowski space-time as a twistor space.


2012 ◽  
Vol 2 (1) ◽  
Author(s):  
B. J. B. Crowley ◽  
R. Bingham ◽  
R. G. Evans ◽  
D. O. Gericke ◽  
O. L. Landen ◽  
...  

Author(s):  
Vo Van Thuan ◽  
Dao Dinh Duc

Due to helical cylindrical time-evolution of electrons the mankind observation at a quantum mechanical scale depends on synchronization between observers and their surrounding cosmological medium by collective dynamics. From one side, the synchronization leads to linearization of an embedded 4D space-time reminiscent of the flat Minkowski space-time. From another side, variation of the synchronization due to independent proper plane wave oscillations of each electron being constrained in a short time quantized period, implies that there only statistical averaged physical quantities are observable, which is in consistency with statistical indeterministic concept of traditional quantum mechanics.


2019 ◽  
Author(s):  
Rainer Kühne

I examine the groups which underly classical mechanics, non-relativistic quantum mechanics, special relativity, relativistic quantum mechanics, quantum electrodynamics, quantum flavourdynamics, quantum chromodynamics, and general relativity. This examination includes the rotations SO(2) and SO(3), the Pauli algebra, the Lorentz transformations, the Dirac algebra, and the U(1), SU(2), and SU(3) gauge transformations. I argue that general relativity must be generalized to Einstein-Cartan theory, so that Dirac spinors can be described within the framework of gravitation theory.


Sign in / Sign up

Export Citation Format

Share Document