STABILITY OF RAREFACTION WAVES AND VACUUM STATES FOR THE MULTIDIMENSIONAL EULER EQUATIONS

2007 ◽  
Vol 04 (01) ◽  
pp. 105-122 ◽  
Author(s):  
GUI-QIANG CHEN ◽  
JUN CHEN

We are interested in properties of the multidimensional Euler equations for compressible fluids. Rarefaction waves are the unique solutions that may contain vacuum states in later time, in the context of one-dimensional Riemann problem, even when the Riemann initial data are away from the vacuum. For the multidimensional Euler equations describing isentropic or adiabatic fluids, we prove that plane rarefaction waves and vacuum states are stable within a large class of entropy solutions that may contain vacuum states. Rarefaction waves and vacuum states are also shown to be global attractors of entropy solutions in L∞, provided initial data are L∞ ∩ L1 perturbations of Riemann initial data. Our analysis applies to entropy solutions with arbitrarily large oscillation, and no bounded variation regularity is required.

2015 ◽  
Vol 12 (03) ◽  
pp. 489-499 ◽  
Author(s):  
Eduard Feireisl ◽  
Ondřej Kreml

We show that 1D rarefaction wave solutions are unique in the class of bounded entropy solutions to the multidimensional compressible Euler system. Such a result may be viewed as a counterpart of the recent examples of non-uniqueness of the shock wave solutions to the Riemann problem, where infinitely many solutions are constructed by the method of convex integration.


Author(s):  
Yu Zhang ◽  
Yanyan Zhang

The Riemann problem for the two-dimensional steady pressureless isentropic relativistic Euler equations with delta initial data is studied. First, the perturbed Riemann problem with three pieces constant initial data is solved. Then, via discussing the limits of solutions to the perturbed Riemann problem, the global solutions of Riemann problem with delta initial data are completely constructed under the stability theory of weak solutions. Interestingly, the delta contact discontinuity is found in the Riemann solutions of the two-dimensional steady pressureless isentropic relativistic Euler equations with delta initial data.


Sign in / Sign up

Export Citation Format

Share Document