WELL-POSEDNESS AND BLOWUP PHENOMENA FOR A THREE-COMPONENT CAMASSA–HOLM SYSTEM WITH PEAKONS

2012 ◽  
Vol 09 (03) ◽  
pp. 451-467 ◽  
Author(s):  
QIAOYI HU ◽  
LIYUN LIN ◽  
JI JIN

First, we establish the local well-posedness of the initial value problem for a new three-component Camassa–Holm system with peakons. We then present a precise blowup scenario and several blowup results for strong solutions to that system. Finally, we determine the blowup rate of strong solutions to the system when a blowup occurs. Our results include all earlier results on the Camassa–Holm equation and on a two-component Camassa–Holm system with peakons.

2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Yongsheng Mi ◽  
Chunlai Mu ◽  
Weian Tao

We study the Cauchy problem of a weakly dissipative modified two-component periodic Camassa-Holm equation. We first establish the local well-posedness result. Then we derive the precise blow-up scenario and the blow-up rate for strong solutions to the system. Finally, we present two blow-up results for strong solutions to the system.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yongsheng Mi ◽  
Chunlai Mu

We study the Cauchy problem of a weakly dissipative modified two-component Camassa-Holm equation. We firstly establish the local well-posedness result. Then we present a precise blow-up scenario. Moreover, we obtain several blow-up results and the blow-up rate of strong solutions. Finally, we consider the asymptotic behavior of solutions.


Author(s):  
Guoquan Qin ◽  
Zhenya Yan ◽  
Boling Guo

In this paper, we investigate the initial value problem of a nonlocal sine-type µ-Camassa-Holm (µCH) equation, which is the µ-version of the sine-type CH equation. We first discuss its local well-posedness in the framework of Besov spaces. Then a sufficient condition on the initial data is provided to ensure the occurance of the wave-breaking phenomenon. We finally prove the H¨older continuity of the data-to-solution map, and find the explicit formula of the global weak periodic peakon solution.


Author(s):  
Qiaoyi Hu ◽  
Zhaoyang Yin

We establish the local well-posedness for a periodic two-component Camassa–Holm equation. We then present precise blow-up scenarios. Finally, we obtain several blow-up results and the blow-up rate of strong solutions to the equation.


2009 ◽  
Vol 06 (03) ◽  
pp. 549-575 ◽  
Author(s):  
J. COLLIANDER ◽  
S. IBRAHIM ◽  
M. MAJDOUB ◽  
N. MASMOUDI

We investigate the initial value problem for a defocusing nonlinear Schrödinger equation with exponential nonlinearity [Formula: see text] We identify subcritical, critical, and supercritical regimes in the energy space. We establish global well-posedness in the subcritical and critical regimes. Well-posedness fails to hold in the supercritical case.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hyungjin Huh

We study the initial value problem of some nonlinear Dirac equations which areLmℝcritical. Corresponding to the structure of nonlinear terms, global strong solutions can be obtained in different Lebesgue spaces by using solution representation formula. The uniqueness of weak solutions is proved for the solutionU∈L∞0,T; Ym+2ℝ.


Universe ◽  
2019 ◽  
Vol 5 (12) ◽  
pp. 224 ◽  
Author(s):  
Stefano Vignolo

We discuss the Cauchy problem and the junction conditions within the framework of f ( R ) -gravity with torsion. We derive sufficient conditions to ensure the well-posedness of the initial value problem, as well as general conditions to join together on a given hypersurface two different solutions of the field equations. The stated results can be useful to distinguish viable from nonviable f ( R ) -models with torsion.


Sign in / Sign up

Export Citation Format

Share Document