Semi-topological Galois Theory

2015 ◽  
Vol 22 (04) ◽  
pp. 687-706
Author(s):  
Hsuan-Yi Liao ◽  
Jyh-Haur Teh

We introduce splitting coverings to enhance the well known analogy between field extensions and covering spaces. Semi-topological Galois groups are defined for Weierstrass polynomials and a Galois correspondence is proved. Combining results from braid groups, we solve the topological inverse Galois problem. As an application, symmetric and cyclic groups are realized over ℚ.

Author(s):  
Julio R. Bastida ◽  
Roger Lyndon

2004 ◽  
Vol 45 (3-4) ◽  
pp. 349-358 ◽  
Author(s):  
Angel Popescu ◽  
Nicolae Popescu ◽  
Alexandru Zaharescu

2015 ◽  
Vol 16 (1) ◽  
pp. 59-119 ◽  
Author(s):  
Lucia Di Vizio ◽  
Charlotte Hardouin ◽  
Michael Wibmer

We extend and apply the Galois theory of linear differential equations equipped with the action of an endomorphism. The Galois groups in this Galois theory are difference algebraic groups, and we use structure theorems for these groups to characterize the possible difference algebraic relations among solutions of linear differential equations. This yields tools to show that certain special functions are difference transcendent. One of our main results is a characterization of discrete integrability of linear differential equations with almost simple usual Galois group, based on a structure theorem for the Zariski dense difference algebraic subgroups of almost simple algebraic groups, which is a schematic version, in characteristic zero, of a result due to Z. Chatzidakis, E. Hrushovski, and Y. Peterzil.


2005 ◽  
Vol 16 (06) ◽  
pp. 567-593
Author(s):  
T. M. GENDRON ◽  
A. VERJOVSKY

This paper concerns the description of holomorphic extensions of algebraic number fields. After expanding the notion of adele class group to number fields of infinite degree over ℚ, a hyperbolized adele class group [Formula: see text] is assigned to every number field K/ℚ. The projectivization of the Hardy space ℙ𝖧•[K] of graded-holomorphic functions on [Formula: see text] possesses two operations ⊕ and ⊗ giving it the structure of a nonlinear field extension of K. We show that the Galois theory of these nonlinear number fields coincides with their discrete counterparts in that 𝖦𝖺𝗅(ℙ𝖧•[K]/K) = 1 and 𝖦𝖺𝗅(ℙ𝖧•[L]/ℙ𝖧•[K]) ≅ 𝖦𝖺𝗅(L/K) if L/K is Galois. If K ab denotes the maximal abelian extension of K and 𝖢K is the idele class group, it is shown that there are embeddings of 𝖢K into 𝖦𝖺𝗅⊕(ℙ𝖧•[K ab ]/K) and 𝖦𝖺𝗅⊗(ℙ𝖧•[K ab ]/K), the "Galois groups" of automorphisms preserving ⊕ (respectively, ⊗) only.


2014 ◽  
Vol 17 (1) ◽  
pp. 141-158 ◽  
Author(s):  
Claus Fieker ◽  
Jürgen Klüners

AbstractComputational Galois theory, in particular the problem of computing the Galois group of a given polynomial, is a very old problem. Currently, the best algorithmic solution is Stauduhar’s method. Computationally, one of the key challenges in the application of Stauduhar’s method is to find, for a given pair of groups $H<G$, a $G$-relative $H$-invariant, that is a multivariate polynomial $F$ that is $H$-invariant, but not $G$-invariant. While generic, theoretical methods are known to find such $F$, in general they yield impractical answers. We give a general method for computing invariants of large degree which improves on previous known methods, as well as various special invariants that are derived from the structure of the groups. We then apply our new invariants to the task of computing the Galois groups of polynomials over the rational numbers, resulting in the first practical degree independent algorithm.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
A. Esterov ◽  
L. Lang

AbstractWe introduce a new technique to prove connectivity of subsets of covering spaces (so called inductive connectivity), and apply it to Galois theory of problems of enumerative geometry. As a model example, consider the problem of permuting the roots of a complex polynomial $$f(x) = c_0 + c_1 x^{d_1} + \cdots + c_k x^{d_k}$$ f ( x ) = c 0 + c 1 x d 1 + ⋯ + c k x d k by varying its coefficients. If the GCD of the exponents is d, then the polynomial admits the change of variable $$y=x^d$$ y = x d , and its roots split into necklaces of length d. At best we can expect to permute these necklaces, i.e. the Galois group of f equals the wreath product of the symmetric group over $$d_k/d$$ d k / d elements and $${\mathbb {Z}}/d{\mathbb {Z}}$$ Z / d Z . We study the multidimensional generalization of this equality: the Galois group of a general system of polynomial equations equals the expected wreath product for a large class of systems, but in general this expected equality fails, making the problem of describing such Galois groups unexpectedly rich.


Sign in / Sign up

Export Citation Format

Share Document