Electronic structure of five- and six-coordinate iron(III) tetraazaporphyrin complexes: pyrrole-Cαchemical shift as a useful probe

2008 ◽  
Vol 12 (09) ◽  
pp. 1041-1049 ◽  
Author(s):  
Takahisa Ikeue ◽  
Satoshi Kurahashi ◽  
Makoto Handa ◽  
Tamotu Sugimori ◽  
Mikio Nakamura

Electronic structure of a series of five-coordinate Fe ( OArTAzP ) X ( OAr = octaaryltetraazaporphyrin , X = Cl-, Br-, I-; Ar = 4-tert-butylphenyl) have been examined on the basis of1H NMR,13C NMR, and EPR spectroscopy as well as SQUID magnetometry. These complexes adopt the intermediate-spin state as in the case of analogous complexes reported by Fitzgerald et al. (Inorg. Chem. 1992; 31: 2006-2013) and Stuzhin et al. (Inorg. Chim. Acta 1995; 236: 131-139). The13C NMR studies using13C -enriched complexes at the pyrrole α positions have revealed that the pyrrole- Cαsignals appear at extraordinary upfield positions, i.e. -130 to -250 ppm at 273 K, due to the dz2-a2 uand dπ-3 eginteractions. The Curie plots of the pyrrole- Cαsignals have further revealed that the iodide complex adopts a much purer intermediate-spin state than the bromide and chloride complexes. In contrast to the case of Fe ( OArTAzP ) X , six-coordinate [ Fe ( OArTAzP )( CN )2]-showed the pyrrole- Cαsignal at 47 ppm at 273 K, which indicates that the complex adopts the low-spin state with the ( dxy)2( dxz, dyz)3electron configuration. Thus, the13C NMR chemical shift of the pyrrole- Cαsignal turns out to be quite a good probe to elucidate the spin state and electron configuration of iron(III) tetraazaporphyrins, where the1H NMR spectroscopy is less useful because of the absence of the hydrogen atoms as well as the alkyl or aryl groups directly attached to the meso positions.

2018 ◽  
Vol 98 (3) ◽  
Author(s):  
Ru-Pan Wang ◽  
Atsushi Hariki ◽  
Andrii Sotnikov ◽  
Federica Frati ◽  
Jun Okamoto ◽  
...  

2006 ◽  
Vol 84 (3) ◽  
pp. 421-428 ◽  
Author(s):  
Alex D Bain ◽  
Hao Chen ◽  
Paul H.M Harrison

Amides that are twisted around the C—N bond show unusual spectroscopy and reactivity when compared with planar amides. The diacyl derivatives of 3,4,7,8-tetramethyl-2,5-dithioglycoluril are intriguing examples of this class, since the crystal structures show that the two acyl groups are twisted by different amounts on either side of the molecule owing to a combination of steric and electronic effects. However, the 1H NMR spectra in solution at room temperature exhibit only one acyl resonance, so there must be fast interconversion among pairs of equivalent structures of each compound. We have prepared a number of derivatives with different acyl groups, both on the glycoluril framework as well as on its dithio analogue. The chemical exchange in solution was slowed down sufficiently by cooling to see individual sites for only two compounds: the dithiodipivaloyl and the dithiodiadamantyl derivatives. The barriers were estimated at 41 kJ mol–1 for the dipivaloyl derivative and 45 kJ mol–1 for diadamantyl derivative. The results show that rotation around the twisted amide bond is slowed by both the steric size of the acyl group and the presence of the thioureido group vs. the ureido group in the glycoluril core. In the solid-state 13C NMR spectra, there is no evidence for any dynamics, even for the diacetyl derivative at ambient temperature. Electronic structure calculations predict a geometry for the dipivaloyl derivative very close to that observed in the crystal structure. These results indicate that the crystal confines, but does not distort the molecule. A mechanism for the exchange is proposed. The relevance of these results to the mechanism of Claisen-like condensations in diacylglycolurils is also discussed.Key words: 1H and 13C NMR, exchange, dynamics, CP/MAS, solids, line shape analysis, amides, twisted amides, atropisomers, glycoluril.


1987 ◽  
Vol 86 (10) ◽  
pp. 5288-5293 ◽  
Author(s):  
Govind P. Gupta ◽  
George Lang ◽  
Christopher A. Reed ◽  
Kenneth Shelly ◽  
W. Robert Scheidt

2014 ◽  
Vol 18 (08n09) ◽  
pp. 778-791 ◽  
Author(s):  
Akira Ikezaki ◽  
Jyunpei Ono ◽  
Yoshiki Ohgo ◽  
Mari Fukagawa ◽  
Takahisa Ikeue ◽  
...  

Low-spin iron(III) tetrapropylchlorins [ Fe ( T n PrC ) L 2]± (L = HIm, 1-MeIm, DMAP, CN-, 4-CNPy, tBuNC) adopt the dxy-type ground state regardless of the nature of axial ligands. Among the complexes examined, [ Fe ( T n PrC )( t BuNC )2]+ has shown quite unique spectroscopic properties as described below. (1) 1 H NMR signals were extremely broad as compared with those of other complexes. In particular, 5,20- CH 2(α) signal was too broad to detect. (2) No signals except C γ were observed in 13 C NMR spectra. (3) Tetragonal splitting parameter (|Δ|) estimated by the EPR g values at 4.2 K reached as much as 12.4 λ, which is the largest |Δ| value among all the low-spin iron(III) porphyrins and porphyrinoids reported previously. On the basis of these results, we have concluded that [ Fe ( T n PrC )( t BuNC )2]+ adopts the low-spin iron(III) with (dxz, dyz)4(dxy)1 electronic ground state at 4.2–30 K where the EPR spectra are taken, while it should be expressed as the low-spin Fe ( II ) chlorin π-radical cation [ Fe II ( T n PrC .)( t BuNC )2]+ at ambient temperature where the NMR spectra are taken.


2018 ◽  
Author(s):  
Giovanni Li Manni ◽  
Daniel Kats ◽  
David Tew ◽  
Ali Alavi

The role of valence and semi-core correlation in differentially stabilizing the intermediate spin-state of Fe(II)-porphyrins is analyzed. CASSCF treatment of the valence correlation, with a (32,34) active space containing metal 3d, 4d orbitals<br>and the entire π system of the porphyrin, is necessary to stabilize the intermediate spin-state for this system. Semi-core correlation provides a quantitatively significant (~1.5 kcal/mol) but less important correction. Accounting for both types of correlation enlarges the (<sup>3</sup>E<sub>g</sub>−<sup>5</sup>A<sub>1g</sub>) spin-gap to −5kcal/mol.<br>


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2301
Author(s):  
Akihiro Tsuruta ◽  
Shuji Kawasaki ◽  
Masashi Mikami ◽  
Yoshiaki Kinemuchi ◽  
Yoshitake Masuda ◽  
...  

We investigated the Co substitution effect for the magnetic properties in room-temperature ferromagnetic oxide Sr3.1Y0.9Co4O10.5. The substituted element (Al and Ga) and low-spin state Co3+, which was changed from a high-spin or intermediate-spin state by Al or Ga substitution, reduced the Curie temperature to even 1.5 times lower than the temperature estimated from a simple dilution effect. Al3+ preferentially substituted for intermediate-spin-state Co3+ in the ferrimagnetic CoO6 layer and deteriorated the saturation magnetization of Sr3.1Y0.9Co4O10.5. By contrast, Ga3+ substituted for high-spin-state Co3+ in the CoO6 layer and/or the antiferromagnetic CoO4.25 layer and enhanced the saturation magnetization per Co ion. These results indicate that the magnetic properties of Sr3.1Y0.9Co4O10.5 can be controlled by selectively substituting for Co3+ with different spin states.


Sign in / Sign up

Export Citation Format

Share Document