Pyridone substituted phthalocyanines: Photophysico-chemical properties and TD-DFT calculations

2018 ◽  
Vol 22 (01n03) ◽  
pp. 25-31 ◽  
Author(s):  
Şaziye Abdurrahmanoğlu ◽  
Mevlüde Canlıca ◽  
John Mack ◽  
Tebello Nyokong

4-(6-methyl-3-nitro-2-oxo-1,2-dihydropyridin-4-yloxy)phthalonitrile has been used to prepare a novel Zn(II) phthalocyanines with four peripheral pyridone substituents. The compound has been characterized by UV-visible absorption, FT-IR and [Formula: see text]H-NMR spectroscopy, elemental analysis and MALDI-TOF mass spectroscopy. The fluorescence, triplet quantum and singlet oxygen quantum yields have been determined and TD-DFT calculations have been used to identify trends in the electronic structure.

2014 ◽  
Vol 18 (04) ◽  
pp. 326-335 ◽  
Author(s):  
Yusuf Yılmaz ◽  
John Mack ◽  
M. Kasım Şener ◽  
Mehmet Sönmez ◽  
Tebello Nyokong

The synthesis of metal free, magnesium and zinc tetrakis(2-benzoyl-4-chlorophenoxy) phthalocyanine derivatives (2–4) is described along with their characterization by elemental analysis, IR, UV-visible absorption, and 1 H NMR spectroscopy and mass spectrometry. Trends observed in the fluorescence, triplet state, singlet oxygen and photodegradation quantum yields and the triplet state lifetimes are also analyzed. The compounds exhibit high solubility in a wide range of organic solvents and no evidence of aggregation was observed over a wide concentration range. The Zn ( II ) complex (4) was found to have a very high singlet oxygen quantum yield (ΦΔ = 0.78) in dimethylsulfoxide (DMSO) and a reasonably large triplet state quantum yield (ΦT = 0.82). The photophysical and photochemical properties clearly demonstrate that these compounds could prove useful in singlet oxygen applications such as photodynamic therapy (PDT). DFT and TD-DFT calculations were used to assess the impact of the positional isomerism of the 2-benzoyl-4-chlorophenoxy substituents on the electronic structures and optical spectroscopy.


2014 ◽  
Vol 18 (03) ◽  
pp. 251-258 ◽  
Author(s):  
Yusuf Yılmaz ◽  
John Mack ◽  
Mehmet Sönmez ◽  
Tebello Nyokong

The synthesis of a novel free base tetrakis(prop-2-ynyloxy)phthalocyanine (2) is described, along with its characterization by IR, UV-visible absorption, and 1 H NMR spectroscopy and mass spectrometry. The compound exhibited good solubility in a wide range of organic solvents and no significant aggregation was observed over a wide concentration range. The values for the singlet oxygen (ΦΔ), photodegradation, fluorescence (ΦF) and triplet state quantum yields and the fluorescence and triplet state lifetimes are reported. A relatively high ΦΔ value of 0.46 was obtained in DMSO. The ability to carry out "click" chemistry at the ligand periphery enhances the potential utility of 2 for use in bioconjugates in photodynamic therapy (PDT). A moderately high ΦF value of 0.18 is observed for emission in the therapeutic window in the near-IR region, which suggests that it may also be possible to determine the level of localization of 2 in tumor cells through bioimaging.


RSC Advances ◽  
2016 ◽  
Vol 6 (88) ◽  
pp. 84712-84721 ◽  
Author(s):  
Maria A. Cardona ◽  
Marina Kveder ◽  
Ulrich Baisch ◽  
Michael R. Probert ◽  
David C. Magri

Two phenyl β-aminobisulfonate ligands characterised by UV-visible absorption, EPR and 1H NMR spectroscopy exhibit evidence for binding with Cu2+ in water and methanol.


2016 ◽  
Vol 20 (01n04) ◽  
pp. 505-513 ◽  
Author(s):  
John Mack ◽  
Scebi Mkhize ◽  
Evgeniya A. Safonova ◽  
Alexander G. Martynov ◽  
Yulia G. Gorbunova ◽  
...  

An analysis of the MCD spectroscopy and TD-DFT calculations of magnesium tetra-(15-crown-5-oxanthreno)-phthalocyanine is reported. This study provides a reassessment of an earlier study on the nature of the bands in UV-visible absorption spectra of magnesium and zinc tetra-(15-crown-5-oxanthreno)-phthalocyanine that was based on an analysis of TD-DFT calculations for a series of model complexes with the B3LYP functional. A detailed analysis of MCD spectral data and TD-DFT calculations with the CAM-B3LYP functional for the complete Mg(II) complex provides an additional insight into the optical properties and electronic structures of tetra-(15-crown-5-oxanthreno)-phthalocyanines. Thus, the bands in the Q-band region are reassigned as being due exclusively to the Q transition of Gouterman’s 4-orbital model, since intense pseudo-[Formula: see text] terms are observed in the MCD spectrum in a spectral region that had previously been assigned as charge transfer bands.


2009 ◽  
Vol 2009 (5) ◽  
pp. 312-316 ◽  
Author(s):  
Chun Keun Jang ◽  
Jae Yun Jaung

Some phthalocyanines soluble in organic solvents have been developed by peripheral introduction of substituent groups. We report a new method for preparation of the polyphenyl-substituted dicyanopyrazines based on the [2 + 4] Diels-Alder cycloaddition of the tetraphenylcyclopentadienone to an ethynyl compound. The synthesised tetrapyrazinoporphyrazinato metal complexes were characterised by UV-visible spectroscopy, MALDI-TOF-Ms (matrix-assisted laser desorption ionisation time-of-flight mass) spectroscopy, and 1H NMR spectroscopy.


Author(s):  
Narayanasamy Rajendiran ◽  
J. Thulasidhasan ◽  
M. Jude Jenita

The inclusion complexation of 2-aminobenzoic acid (2ABA), 3-aminobenzoic acid (3ABA), and 4-aminobenzoic acid (4ABA) with α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), hydroxypropyl-α-cyclodextrin (HP-α-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) were studied in buffer solutions of differentpHs (pH~1 andpH~7) and it was carried out using UV-Visible, steady-state and time-resolved fluorescence. Dual fluorescence was observed for all the compounds in aqueous and CD medium. All the ABAs forms 1:1 inclusion complex at pH ~ 1 solution and mixture of 1:1 and 1:2 inclusion complex at pH ~7. With CDs, dual luminescence appeared at pH ~ 1 indicates, both NH3+and COOH groups are present in the interior of the CDs cavities. FT-IR,1H NMR, results suggest ABAs formed a stable inclusion complex with the CDs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abida Ashraf ◽  
Muhammad Islam ◽  
Muhammad Khalid ◽  
Anthony P. Davis ◽  
Muhammad Tayyeb Ahsan ◽  
...  

AbstractHighly selective and sensitive 2,7-naphthyridine based colorimetric and fluorescence “Turn Off” chemosensors (L1-L4) for detection of Ni2+ in aqueous media are reported. The receptors (L1-L4) showed a distinct color change from yellow to red by addition of Ni2+ with spectral changes in bands at 535–550 nm. The changes are reversible and pH independent. The detection limits for Ni2+ by (L1-L4) are in the range of 0.2–0.5 µM by UV–Visible data and 0.040–0.47 µM by fluorescence data, which is lower than the permissible value of Ni2+ (1.2 µM) in drinking water defined by EPA. The binding stoichiometries of L1-L4 for Ni2+ were found to be 2:1 through Job’s plot and ESI–MS analysis. Moreover the receptors can be used to quantify Ni2+ in real water samples. Formation of test strips by the dip-stick method increases the practical applicability of the Ni2+ test for “in-the-field” measurements. DFT calculations and AIM analyses supported the experimentally determined 2:1 stoichiometries of complexation. TD-DFT calculations were performed which showed slightly decreased FMO energy gaps due to ligand–metal charge transfer (LMCT).


Sign in / Sign up

Export Citation Format

Share Document