Radiosynthesis, molecular modeling and biodistribution of 99mTc-Protoporphyrin as a preclinical model for tumor diagnosis

2020 ◽  
Vol 24 (10) ◽  
pp. 1174-1188
Author(s):  
Mohamed A. Gizawy ◽  
Mohsen M. T. El-Tahawy ◽  
Mohamed A. Motaleb

Porphyrins are among the most important and widely used compounds involved in a variety of chemical and biochemical applications. These molecules exhibit very special properties that encourage researchers to label many derivatives with diagnostic or therapeutic radionuclides for medical applications. This study reports the radiolabeling and biodistribution of [Formula: see text]Tc-protoporphyrin IX ([Formula: see text]Tc-PPIX) as a novel potential solid-tumor imaging agent. The factors affecting the radiolabeling process were varied to achieve maximum radiochemical yield. [Formula: see text]Tc-PPIX was obtained in high yield of 97.34 ± 0.21% and high stability in serum up to 24 h. The radiochemical yield of [Formula: see text]Tc-PPIX was assessed by a combination of a paper chromatographic technique and HPLC. A computational analysis for all the potential structures that may be formed due to the interaction between protoporphyrin IX and technetium was performed via the DFT method of calculations in gas phase to predict the most likely structure. Molecular docking was further employed to shed light on the nature of the interaction between the most stable complexes with the target protein. Finally, the in-vivo biodistribution of [Formula: see text]Tc-PPIX complex was evaluated in solid-tumor-bearing mice and high tumor/tissue ratio of 5.17 ± 0.34 at 60 min post injection was obtained. Our finding clearly suggests [Formula: see text]Tc-PPIX as a potential SPECT agent for tumor imaging.

Author(s):  
Qinheng Zheng ◽  
Hongtao Xu ◽  
Hua Wang ◽  
Wen-Ge Han Du ◽  
Nan Wang ◽  
...  

The lack of simple, efficient [<sup>18</sup>F]fluorination processes and new target-specific organofluorine probes remains the major challenge of fluorine-18-based positron emission tomography (PET). We report here a fast isotopic exchange method for the radiosynthesis of aryl [<sup>18</sup>F]fluorosulfate based PET agents enabled by the emerging sulfur fluoride exchange (SuFEx) click chemistry. The method has been applied to the fully-automated <sup>18</sup>F-radiolabeling of twenty-five structurally diverse aryl fluorosulfates with excellent radiochemical yield (83–100%) and high molar activity (up to 281 GBq µmol<sup>–1</sup>) at room temperature in 30 seconds. The purification of radiotracers requires no time-consuming high-performance liquid chromatography (HPLC), but rather a simple cartridge filtration. The utility of aryl [<sup>18</sup>F]fluorosulfate is demonstrated by the <i>in vivo</i> tumor imaging by targeting poly(ADP-ribose) polymerase 1 (PARP1).


2020 ◽  
Author(s):  
Qinheng Zheng ◽  
Hongtao Xu ◽  
Hua Wang ◽  
Wen-Ge Han Du ◽  
Nan Wang ◽  
...  

The lack of simple, efficient [<sup>18</sup>F]fluorination processes and new target-specific organofluorine probes remains the major challenge of fluorine-18-based positron emission tomography (PET). We report here a fast isotopic exchange method for the radiosynthesis of aryl [<sup>18</sup>F]fluorosulfate based PET agents enabled by the emerging sulfur fluoride exchange (SuFEx) click chemistry. The method has been applied to the fully-automated <sup>18</sup>F-radiolabeling of twenty-five structurally diverse aryl fluorosulfates with excellent radiochemical yield (83–100%) and high molar activity (up to 281 GBq µmol<sup>–1</sup>) at room temperature in 30 seconds. The purification of radiotracers requires no time-consuming high-performance liquid chromatography (HPLC), but rather a simple cartridge filtration. The utility of aryl [<sup>18</sup>F]fluorosulfate is demonstrated by the <i>in vivo</i> tumor imaging by targeting poly(ADP-ribose) polymerase 1 (PARP1).


Author(s):  
Qinheng Zheng ◽  
Hongtao Xu ◽  
Hua Wang ◽  
Wen-Ge Han Du ◽  
Nan Wang ◽  
...  

The lack of simple, efficient [<sup>18</sup>F]fluorination processes and new target-specific organofluorine probes remains the major challenge of fluorine-18-based positron emission tomography (PET). We report here a fast isotopic exchange method for the radiosynthesis of aryl [<sup>18</sup>F]fluorosulfate based PET agents enabled by the emerging sulfur fluoride exchange (SuFEx) click chemistry. The method has been applied to the fully-automated <sup>18</sup>F-radiolabeling of twenty-five structurally diverse aryl fluorosulfates with excellent radiochemical yield (83–100%) and high molar activity (up to 281 GBq µmol<sup>–1</sup>) at room temperature in 30 seconds. The purification of radiotracers requires no time-consuming high-performance liquid chromatography (HPLC), but rather a simple cartridge filtration. The utility of aryl [<sup>18</sup>F]fluorosulfate is demonstrated by the <i>in vivo</i> tumor imaging by targeting poly(ADP-ribose) polymerase 1 (PARP1).


2020 ◽  
Vol 108 (10) ◽  
pp. 809-819 ◽  
Author(s):  
Basma M. Essa ◽  
Ahmed A. El-Mohty ◽  
Maher A. El-Hashash ◽  
Tamer M. Sakr

AbstractTargeted drug delivery system can reduce the side effects of high drug concentration by improving drug pharmacokinetics at lower doses. Citrate-gold nanoparticles (AuNPs) as a drug delivery system were synthesized via green nanotechnology technique to be used as a new imaging platform for tumor targeting. Citrate-AuNPs were synthesized with core size of 10 nm. Citrate-AuNPs were labeled with technetium-99m (99mTc) with radiochemical yield of 95.20 ± 2.70% with good in-vitro stability in both saline and human serum and well in-vivo studied in both normal and solid tumor bearing mice. The in-vivo biodistribution study of [99mTc]Tc-citrate-AuNPs in solid tumor bearing mice (as preliminary study) showed a high accumulation in tumor site with tumor/muscle of 4.35 ± 0.22 after 30 min post injection. The direct intratumoral (I.T) injection of [99mTc]Tc-citrate-AuNPs showed that this complex was retained in the tumor up to 77.86 ± 1.90 % at 5 min and still around 50.00 ± 1.42 % after 30 min post injection (p.i.). The newly presented nano-platform could be presented as a new potential radiopharmaceutical tumor imaging probe.


2013 ◽  
Vol 40 (6) ◽  
pp. 841-849 ◽  
Author(s):  
Zhibo Liu ◽  
Ying Li ◽  
Jerome Lozada ◽  
May Q. Wong ◽  
Jennifer Greene ◽  
...  

2001 ◽  
Vol 40 (03) ◽  
pp. 59-70 ◽  
Author(s):  
W. Becker ◽  
J. Meiler

SummaryFever of unknown origin (FUO) in immunocompetent and non neutropenic patients is defined as recurrent fever of 38,3° C or greater, lasting 2-3 weeks or longer, and undiagnosed after 1 week of appropriate evaluation. The underlying diseases of FUO are numerous and infection accounts for only 20-40% of them. The majority of FUO-patients have autoimmunity and collagen vascular disease and neoplasm, which are responsible for about 50-60% of all cases. In this respect FOU in its classical definition is clearly separated from postoperative and neutropenic fever where inflammation and infection are more common. Although methods that use in-vitro or in-vivo labeled white blood cells (WBCs) have a high diagnostic accuracy in the detection and exclusion of granulocytic pathology, they are only of limited value in FUO-patients in establishing the final diagnosis due to the low prevalence of purulent processes in this collective. WBCs are more suited in evaluation of the focus in occult sepsis. Ga-67 citrate is the only commercially available gamma emitter which images acute, chronic, granulomatous and autoimmune inflammation and also various malignant diseases. Therefore Ga-67 citrate is currently considered to be the tracer of choice in the diagnostic work-up of FUO. The number of Ga-67-scans contributing to the final diagnosis was found to be higher outside Germany than it has been reported for labeled WBCs. F-l 8-2’-deoxy-2-fluoro-D-glucose (FDG) has been used extensively for tumor imaging with PET. Inflammatory processes accumulate the tracer by similar mechanisms. First results of FDG imaging demonstrated, that FDG may be superior to other nuclear medicine imaging modalities which may be explained by the preferable tracer kinetics of the small F-l 8-FDG molecule and by a better spatial resolution of coincidence imaging in comparison to a conventional gamma camera.


Author(s):  
Pratip Shil ◽  
Amit Kumar ◽  
Pandit B. Vidyasagar ◽  
Kaushala Prasad Mishra
Keyword(s):  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2056-P
Author(s):  
JULIE A. KERR-CONTE ◽  
JULIEN THEVENET ◽  
GIANNI PASQUETTI ◽  
PAULINE PETIT ◽  
CLARA CLABAUT ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document