A DIGITAL VOLUME CORRELATION TECHNIQUE FOR 3-D DEFORMATION MEASUREMENTS OF SOFT GELS

2011 ◽  
Vol 03 (02) ◽  
pp. 335-354 ◽  
Author(s):  
JIANYONG HUANG ◽  
XIAOCHANG PAN ◽  
SHANSHAN LI ◽  
XIAOLING PENG ◽  
CHUNYANG XIONG ◽  
...  

This paper develops a set of digital volume correlation (DVC) algorithms to address 3-D deformation measurements of soft gels with the aid of laser-scanning confocal microscopy. As an extension of the well-developed digital image correlation (DIC) method, the present DVC approach adopts a three-dimensional zero-normalized cross-correlation criterion (3-D ZNCC) to perform volume correlation calculations. Based on a 3-D sum-table scheme and the fast Fourier transform technique, a fast algorithm is first proposed to accelerate the integer-voxel correlation computations. Subsequently, two kinds of sub-voxel registration algorithms, i.e., 3-D gradient-based algorithm and 3-D Newton–Raphson algorithm, are presented to obtain the sub-voxel displacement and strain fields of volume images before and after deformation. Both a series of computer-simulated digital volume images and an actual agarose gel sample randomly embedded with fluorescent particles are employed to verify the 3-D deformation measurement capability of the proposed DVC algorithms, which indicates that they are competent to acquire 3-D displacement and strain fields of soft gels.

Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 505
Author(s):  
Min Hu ◽  
Anders Olsson ◽  
Marie Johansson ◽  
Jan Oscarsson

Strength of structural timber depends to a high degree on the occurrence of knots and on the local fibre deviation around such defects. Knowledge of local fibre orientation, obtained by laser scanning, have been utilized in a previously developed machine strength grading method. However, that method was based on rather crude assumptions regarding the fibre orientation in the interior of boards and a mechanical model that does not capture the full compliance of knotty sections. The purpose of the present study was to suggest and verify a model by which local bending stiffness can be predicted with high accuracy. This study included development of a model of fibre orientation in the interior of boards, and application of a three-dimensional finite element model that is able to capture the compliance of the board. Verification included bending of boards in laboratory and application of digital image correlation to obtain strain fields comparable to those obtained by finite element simulation. Results presented comprise strain fields of boards subjected to bending and calculated bending stiffness variation along boards. Comparisons of results indicated that models suggested herein were sufficient to capture the variation of local bending stiffness along boards with very high accuracy.


Author(s):  
J. Holy ◽  
G. Schatten

One of the classic limitations of light microscopy has been the fact that three dimensional biological events could only be visualized in two dimensions. Recently, this shortcoming has been overcome by combining the technologies of laser scanning confocal microscopy (LSCM) and computer processing of microscopical data by volume rendering methods. We have employed these techniques to examine morphogenetic events characterizing early development of sea urchin embryos. Specifically, the fourth cleavage division was examined because it is at this point that the first morphological signs of cell differentiation appear, manifested in the production of macromeres and micromeres by unequally dividing vegetal blastomeres.The mitotic spindle within vegetal blastomeres undergoing unequal cleavage are highly polarized and develop specialized, flattened asters toward the micromere pole. In order to reconstruct the three-dimensional features of these spindles, both isolated spindles and intact, extracted embryos were fluorescently labeled with antibodies directed against either centrosomes or tubulin.


Author(s):  
Hakan Ancin

This paper presents methods for performing detailed quantitative automated three dimensional (3-D) analysis of cell populations in thick tissue sections while preserving the relative 3-D locations of cells. Specifically, the method disambiguates overlapping clusters of cells, and accurately measures the volume, 3-D location, and shape parameters for each cell. Finally, the entire population of cells is analyzed to detect patterns and groupings with respect to various combinations of cell properties. All of the above is accomplished with zero subjective bias.In this method, a laser-scanning confocal light microscope (LSCM) is used to collect optical sections through the entire thickness (100 - 500μm) of fluorescently-labelled tissue slices. The acquired stack of optical slices is first subjected to axial deblurring using the expectation maximization (EM) algorithm. The resulting isotropic 3-D image is segmented using a spatially-adaptive Poisson based image segmentation algorithm with region-dependent smoothing parameters. Extracting the voxels that were labelled as "foreground" into an active voxel data structure results in a large data reduction.


1994 ◽  
Vol 16 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Stephen E. Mahoney ◽  
Stephen W. Paddock ◽  
Louis C. Smith ◽  
Dorothy E. Lewis ◽  
Madeleine Duvic

2020 ◽  
Vol 10 (14) ◽  
pp. 4898
Author(s):  
Hailing Shi ◽  
Jerome Hosdez ◽  
Thomas Rougelot ◽  
Shouyi Xie ◽  
Jianfu Shao ◽  
...  

Creep tests are commonly performed to characterize time-dependent deformation of geological materials. Classical measuring methods are not suitable for long term tests and not able to provide full three-dimensional strain fields. In this study, Digital Volume Correlation (DVC) is applied to X-ray micro-tomography (XRMT) images from creep tests on a hard clayey rock. In situ uniaxial compression creep tests are performed under different levels of stress and with different loading orientations with respect to the structural anisotropy of rock. Based on the XRMT images taken during the creep tests, DVC is applied to compute the full three dimensional strain fields and global averages strains of tested samples. The effects of bedding planes and hard inclusions on the non-uniform distribution of strains are analyzed.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1387 ◽  
Author(s):  
M. Galip Icduygu ◽  
Meltem Asilturk ◽  
M. Akif Yalcinkaya ◽  
Youssef K. Hamidi ◽  
M. Cengiz Altan

The three-dimensional nano-morphology of poly(methyl methacrylate; PMMA) microcapsules filled with carbon nanotubes (CNTs) and epoxy resin were investigated by various microscopy methods, including a novel, laser scanning confocal microscopy (LSCM) method. Initially, PMMA microcapsules containing various amounts of CNTs were synthesized by a solvent evaporation method. Scanning electron microscopy analysis showed that pore-free, smooth-surface microcapsules formed with various types of core-shell morphologies. The average size of CNT/epoxy/PMMA microcapsules was shown to decrease from ~52 μm to ~15 μm when mixing speed during synthesis increased from 300 rpm to 1000 rpm. In general, the presence of CNTs resulted in slightly larger microcapsules and higher variations in size. Moreover, three-dimensional scans obtained from confocal microscopy revealed that higher CNT content increased the occurrence and size of CNT aggregates inside the microcapsules. Entrapped submicron air bubbles were also observed inside most microcapsules, particularly within those with higher CNT content.


Biologia ◽  
2009 ◽  
Vol 64 (6) ◽  
Author(s):  
Paulína Gálfiová ◽  
Ivan Varga ◽  
Martin Kopáni ◽  
Peter Michalka ◽  
Jana Michalková ◽  
...  

AbstractThe representation of microcirculation can be approached in several ways. One of the possibilities is to represent the endothelium (endothelial or sinus lining cells) and their basement membrane on the basis of detecting the known components and the expression of the surface antigenes by the methods of immuno-, enzyme- or lectino-histochemical analysis, or by staining or impregnation histological methods. The other possibility is the examination of samples by transmission and scanning electron microscopy. For three-dimensional demonstration corrosion casts techniques or laser scanning confocal microscopy can be used. In this paper we describe the survey of immuno-, enzyme- and lectino-histochemical characteristics of selected components of microcirculation and our own results of its demonstration in human spleen.


Sign in / Sign up

Export Citation Format

Share Document