CWW, LANGUAGE, AND THINKING

2013 ◽  
Vol 09 (02) ◽  
pp. 183-205 ◽  
Author(s):  
L. I. PERLOVSKY ◽  
R. ILIN

Computing with words, CWW, is considered in the context of natural language functioning, unifying language with thinking. Previous attempts at modeling natural languages as well as thinking processes in artificial intelligence have met with computational complexity. To overcome computational complexity we use dynamic logic (DL), an extension of fuzzy logic describing fuzzy to crisp transitions. We suggest a possible architecture motivated by mathematical and neural considerations. We discuss the reasons why CWW has to be modeled jointly with thinking and propose an architecture consistent with brain neural structure and with a wealth of psychological knowledge. The proposed architecture implies the existence of relationships between languages and cultures. We discuss these implications for further evolution of English and Chinese cultures, and for cultural effects of interactions between natural languages and CWW.

Discourse ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 109-117
Author(s):  
O. M. Polyakov

Introduction. The article continues the series of publications on the linguistics of relations (hereinafter R–linguistics) and is devoted to an introduction to the logic of natural language in relation to the approach considered in the series. The problem of natural language logic still remains relevant, since this logic differs significantly from traditional mathematical logic. Moreover, with the appearance of artificial intelligence systems, the importance of this problem only increases. The article analyzes logical problems that prevent the application of classical logic methods to natural languages. This is possible because R-linguistics forms the semantics of a language in the form of world model structures in which language sentences are interpreted.Methodology and sources. The results obtained in the previous parts of the series are used as research tools. To develop the necessary mathematical representations in the field of logic and semantics, the formulated concept of the interpretation operator is used.Results and discussion. The problems that arise when studying the logic of natural language in the framework of R–linguistics are analyzed. These issues are discussed in three aspects: the logical aspect itself; the linguistic aspect; the aspect of correlation with reality. A very General approach to language semantics is considered and semantic axioms of the language are formulated. The problems of the language and its logic related to the most General view of semantics are shown.Conclusion. It is shown that the application of mathematical logic, regardless of its type, to the study of natural language logic faces significant problems. This is a consequence of the inconsistency of existing approaches with the world model. But it is the coherence with the world model that allows us to build a new logical approach. Matching with the model means a semantic approach to logic. Even the most General view of semantics allows to formulate important results about the properties of languages that lack meaning. The simplest examples of semantic interpretation of traditional logic demonstrate its semantic problems (primarily related to negation).


Author(s):  
TRU H. CAO

Conceptual graphs and fuzzy logic are two logical formalisms that emphasize the target of natural language, where conceptual graphs provide a structure of formulas close to that of natural language sentences while fuzzy logic provides a methodology for computing with words. This paper proposes fuzzy conceptual graphs as a knowledge representation language that combines the advantages of both the two formalisms for artificial intelligence approaching human expression and reasoning. Firstly, the conceptual graph language is extended with functional relation types for representing functional dependency, and conjunctive types for joining concepts and relations. Then fuzzy conceptual graphs are formulated as a generalization of conceptual graphs where fuzzy types and fuzzy attribute-values are used in place of crisp types and crisp attribute-values. Projection and join as basic operations for reasoning on fuzzy conceptual graphs are defined, taking into account the semantics of fuzzy set-based values.


2012 ◽  
pp. 1314-1329
Author(s):  
Giovanni Vincenti ◽  
James Braman

Emotions influence our everyday lives, guiding and misguiding us. They lead us to happiness and love, but also to irrational acts. Artificial intelligence aims at constructing agents that can emulate thinking processes, but artificial life still lacks emotions and all the consequences that come from them. This work introduces an emotionally aware framework geared towards multi-agent societies. Basing our model on the shoulders of solid foundations created by pioneers who first explored the coupling of emotions and agency, we extend their ideas to include inter-agent interaction and virtual genetics as key components of an agent’s emotive state. We also introduce possible future applications of this framework in consumer products as well as research endeavors.


Author(s):  
Stephen M. Majercik

Stochastic satisfiability (SSAT) is an extension of satisfiability (SAT) that merges two important areas of artificial intelligence: logic and probabilistic reasoning. Initially suggested by Papadimitriou, who called it a “game against nature”, SSAT is interesting both from a theoretical perspective–it is complete for PSPACE, an important complexity class–and from a practical perspective–a broad class of probabilistic planning problems can be encoded and solved as SSAT instances. This chapter describes SSAT and its variants, their computational complexity, applications of SSAT, analytical results, algorithms and empirical results, related work, and directions for future work.


Author(s):  
L.A. Zadeh

<p>I feel honored by the dedication of the Special Issue of IJCCC to me. I should like to express my deep appreciation to the distinguished Co-Editors and my good friends, Professors Balas, Dzitac and Teodorescu, and to distinguished contributors, for honoring me. The subjects which are addressed in the Special Issue are on the frontiers of fuzzy logic.<br /> <br /> The Foreword gives me an opportunity to share with the readers of the Journal my recent thoughts regarding a subject which I have been pondering about for many years - fuzzy logic and natural languages. The first step toward linking fuzzy logic and natural languages was my 1973 paper," Outline of a New Approach to the Analysis of Complex Systems and Decision Processes." Two key concepts were introduced in that paper. First, the concept of a linguistic variable - a variable which takes words as values; and second, the concept of a fuzzy if- then rule - a rule in which the antecedent and consequent involve linguistic variables. Today, close to forty years later, these concepts are widely used in most applications of fuzzy logic.<br /> <br /> The second step was my 1978 paper, "PRUF - a Meaning Representation Language for Natural Languages." This paper laid the foundation for a series of papers in the eighties in which a fairly complete theory of fuzzy - logic-based semantics of natural languages was developed. My theory did not attract many followers either within the fuzzy logic community or within the linguistics and philosophy of languages communities. There is a reason. The fuzzy logic community is largely a community of engineers, computer scientists and mathematicians - a community which has always shied away from semantics of natural languages. Symmetrically, the linguistics and philosophy of languages communities have shied away from fuzzy logic.<br /> <br /> In the early nineties, a thought that began to crystallize in my mind was that in most of the applications of fuzzy logic linguistic concepts play an important, if not very visible role. It is this thought that motivated the concept of Computing with Words (CW or CWW), introduced in my 1996 paper "Fuzzy Logic = Computing with Words." In essence, Computing with Words is a system of computation in which the objects of computation are words, phrases and propositions drawn from a natural language. The same can be said about Natural Language Processing (NLP.) In fact, CW and NLP have little in common and have altogether different agendas.<br /> <br /> In large measure, CW is concerned with solution of computational problems which are stated in a natural language. Simple example. Given: Probably John is tall. What is the probability that John is short? What is the probability that John is very short? What is the probability that John is not very tall? A less simple example. Given: Usually Robert leaves office at about 5 pm. Typically it takes Robert about an hour to get home from work. What is the probability that Robert is home at 6:l5 pm.? What should be noted is that CW is the only system of computation which has the capability to deal with problems of this kind. The problem-solving capability of CW rests on two key ideas. First, employment of so-called restriction-based semantics (RS) for translation of a natural language into a mathematical language in which the concept of a restriction plays a pivotal role; and second, employment of a calculus of restrictions - a calculus which is centered on the Extension Principle of fuzzy logic.<br /> <br /> What is thought-provoking is that neither traditional mathematics nor standard probability theory has the capability to deal with computational problems which are stated in a natural language. Not having this capability, it is traditional to dismiss such problems as ill-posed. In this perspective, perhaps the most remarkable contribution of CW is that it opens the door to empowering of mathematics with a fascinating capability - the capability to construct mathematical solutions of computational problems which are stated in a natural language. The basic importance of this capability derives from the fact that much of human knowledge, and especially world knowledge, is described in natural language.<br /> <br /> In conclusion, only recently did I begin to realize that the formalism of CW suggests a new and challenging direction in mathematics - mathematical solution of computational problems which are stated in a natural language. For mathematics, this is an unexplored territory.</p>


2021 ◽  
Author(s):  
Bhanu Srivastav

Neural networks are one of the methods of artificial intelligence. It is founded on an existingknowledge and capacity to learn by illustration of the biological nervous system. Neuralnetworks are used to solve problems that could not be modeled with conventional techniques.A neural structure can be learned, adapted, predicted, and graded. The potential of neuralnetwork parameters is very strong prediction. The findings are more reliable than standardmathematical estimation models. Therefore, it has been used in different fields.This research reviews the most recent advancement in utilizing the Artificial neural networks.The reviewed studies have been extracted from Web of Science maintained by ClarivateAnalytics in 2021. We find that among the other applications of ANN, the applications onCovid-19 are on the rise.


Sign in / Sign up

Export Citation Format

Share Document