ON DAVENPORT'S CONSTANT

2008 ◽  
Vol 04 (01) ◽  
pp. 107-115 ◽  
Author(s):  
P. RATH ◽  
K. SRILAKSHMI ◽  
R. THANGADURAI

In this paper, using the idea of Alford, Granville and Pomerance in [1] (or van Emde Boas and Kruyswijk [6]), we obtain an upper bound for the Davenport Constant of an Abelian group G in terms of the number of repetitions of the group elements in any given sequence. In particular, our result implies, [Formula: see text] where n is the exponent of G and k ≥ 0 denotes the number of distinct elements of G that are repeated at least twice in the given sequence.

2018 ◽  
Vol 167 (02) ◽  
pp. 229-247
Author(s):  
TAKAO SATOH

AbstractIn this paper, we study “the ring of component functions” of SL(2, C)-representations of free abelian groups. This is a subsequent research of our previous work [11] for free groups. We introduce some descending filtration of the ring, and determine the structure of its graded quotients.Then we give two applications. In [30], we constructed the generalized Johnson homomorphisms. We give an upper bound on their images with the graded quotients. The other application is to construct a certain crossed homomorphisms of the automorphism groups of free groups. We show that our crossed homomorphism induces Morita's 1-cocycle defined in [22]. In other words, we give another construction of Morita's 1-cocyle with the SL(2, C)-representations of the free abelian group.


2016 ◽  
Vol 68 (1) ◽  
pp. 44-66 ◽  
Author(s):  
David J. Fernández Bretón

AbstractWe answer two questions of Hindman, Steprāns, and Strauss; namely, we prove that every strongly summable ultrafilter on an abelian group is sparse and has the trivial sums property. Moreover, we show that in most cases the sparseness of the given ultrafilter is a consequence of its being isomorphic to a union ultrafilter. However, this does not happen in all cases; we also construct (assuming Martin's Axiom for countable partial orders, i.e., , a strongly summable ultrafilter on the Boolean group that is not additively isomorphic to any union ultrafilter.


1996 ◽  
Vol 48 (3) ◽  
pp. 483-495 ◽  
Author(s):  
Dominique Arlettaz

AbstractThis paper shows that for the Moore spectrum MG associated with any abelian group G, and for any positive integer n, the order of the Postnikov k-invariant kn+1(MG) is equal to the exponent of the homotopy group πnMG. In the case of the sphere spectrum S, this implies that the exponents of the homotopy groups of S provide a universal estimate for the exponent of the kernel of the stable Hurewicz homomorphism hn: πnX → En(X) for the homology theory E*(—) corresponding to any connective ring spectrum E such that π0E is torsion-free and for any bounded below spectrum X. Moreover, an upper bound for the exponent of the cokernel of the generalized Hurewicz homomorphism hn: En(X) → Hn(X; π0E), induced by the 0-th Postnikov section of E, is obtained for any connective spectrum E. An application of these results enables us to approximate in a universal way both kernel and cokernel of the unstable Hurewicz homomorphism between the algebraic K-theory of any ring and the ordinary integral homology of its linear group.


10.37236/4881 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Béla Bajnok ◽  
Ryan Matzke

For a finite abelian group $G$ and positive integers $m$ and $h$, we let $$\rho(G, m, h) = \min \{ |hA| \; : \; A \subseteq G, |A|=m\}$$ and$$\rho_{\pm} (G, m, h) = \min \{ |h_{\pm} A| \; : \; A \subseteq G, |A|=m\},$$ where $hA$ and $h_{\pm} A$ denote the $h$-fold sumset and the $h$-fold signed sumset of $A$, respectively. The study of $\rho(G, m, h)$ has a 200-year-old history and is now known for all $G$, $m$, and $h$. Here we prove that $\rho_{\pm}(G, m, h)$ equals $\rho (G, m, h)$ when $G$ is cyclic, and establish an upper bound for $\rho_{\pm} (G, m, h)$ that we believe gives the exact value for all $G$, $m$, and $h$.


2018 ◽  
Vol 16 (1) ◽  
pp. 154-160 ◽  
Author(s):  
Marcin Anholcer ◽  
Sylwia Cichacz ◽  
Rafał Jura ◽  
Antoni Marczyk

AbstractWe investigate thegroup irregularity strength(sg(G)) of graphs, i.e. the smallest value ofssuch that taking any Abelian group 𝓖 of orders, there exists a functionf:E(G) → 𝓖 such that the sums of edge labels at every vertex are distinct. So far it was not known ifsg(G) is finite for disconnected graphs. In the paper we present some upper bound for all graphs. Moreover we give the exact values and bounds onsg(G) for disconnected graphs without a star as a component.


2014 ◽  
Vol 218 (10) ◽  
pp. 1838-1844 ◽  
Author(s):  
Weidong Gao ◽  
Yuanlin Li ◽  
Jiangtao Peng

2017 ◽  
Vol 14 (01) ◽  
pp. 167-191 ◽  
Author(s):  
Dongchun Han ◽  
Hanbin Zhang

Let [Formula: see text] be an additive finite abelian group with exponent [Formula: see text]. For any positive integer [Formula: see text], let [Formula: see text] be the smallest positive integer [Formula: see text] such that every sequence [Formula: see text] in [Formula: see text] of length at least [Formula: see text] has a zero-sum subsequence of length [Formula: see text]. Let [Formula: see text] be the Davenport constant of [Formula: see text]. In this paper, we prove that if [Formula: see text] is a finite abelian [Formula: see text]-group with [Formula: see text] then [Formula: see text] for every [Formula: see text], which confirms a conjecture by Gao et al. recently, where [Formula: see text] is a prime.


10.37236/7874 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Luis Goddyn ◽  
Kevin Halasz ◽  
E. S. Mahmoodian

The chromatic number of a latin square $L$, denoted $\chi(L)$, is the minimum number of partial transversals needed to cover all of its cells. It has been conjectured that every latin square satisfies $\chi(L) \leq |L|+2$. If true, this would resolve a longstanding conjecture—commonly attributed to Brualdi—that every latin square has a partial transversal of size $|L|-1$. Restricting our attention to Cayley tables of finite groups, we prove two results. First, we resolve the chromatic number question for Cayley tables of finite Abelian groups: the Cayley table of an Abelian group $G$ has chromatic number $|G|$ or $|G|+2$, with the latter case occurring if and only if $G$ has nontrivial cyclic Sylow 2-subgroups. Second, we give an upper bound for the chromatic number of Cayley tables of arbitrary finite groups. For $|G|\geq 3$, this improves the best-known general upper bound from $2|G|$ to $\frac{3}{2}|G|$, while yielding an even stronger result in infinitely many cases.


2017 ◽  
Vol 17 (13&14) ◽  
pp. 1191-1205
Author(s):  
Mathew B. Hastings

We consider Majorana fermion stabilizer codes with small number of modes and distance. We give an upper bound on the number of logical qubits for distance 4 codes, and we construct Majorana fermion codes similar to the classical Hamming code that saturate this bound. We perform numerical studies and find other distance 4 and 6 codes that we conjecture have the largest possible number of logical qubits for the given number of physical Majorana modes. Some of these codes have more logical qubits than any Majorana fermion code derived from a qubit stabilizer code.


Sign in / Sign up

Export Citation Format

Share Document